INDEX

Committees 3
Oral Presentations 5-83
Poster Presentations 85-182
COMMITTEES

ORGANIZING COMMITTEE

CONGRESS PRESIDENT
Dr. Jeff Pettis

APIMONDIA PRESIDENT

APIMONDIA FEDERATION
Dr. Peter Kozmus
Riccardo Jannoni - Sebastianini

APIMONDIA VICE PRESIDENT
APIMONDIA SECRETARY GENERAL

APIMONDIA SCIENTIFIC & REGIONAL COMMISSION PRESIDENTS
Dr. Cristina Mateescu - Romania
Prof. Geraldine Wright - United Kingdom
Dr. Fani Hatjina - Greece
Prof. Norberto Luis Garcia - Argentina
Dr. Lucas Alejandro Garibaldi - Argentina
Dr. Nicola J. Bradbear - United Kingdom
Etienne Bruneau - Belgium
David Mukomana - Zimbabwe
Lucas Martinez - Argentina
Dr. Cleofas Rodriguez Cervancia - Philippines
Dr. Robert Chlebo - Slovakia
Jodie Goldsworthy - Australia

APITHERAPY COMMISSION
BEE BIOLOGY COMMISSION
BEE HEALTH COMMISSION
BEEKEEPING ECONOMY COMMISSION
POLLINATION AND BEE FLORA COMMISSION
RURAL DEVELOPMENT COMMISSION
TECHNOLOGY AND QUALITY COMMISSION
AFRICA COMMISSION
AMERICAS COMMISSION
ASIA COMMISSION
EUROPE COMMISSION
OCEANIA COMMISSION

OTHER MEMBERS
Enid Brown
James Edge
Maria Alejandra Palacio

SCIENTIFIC COMMITTEE

Dr. Cristina Mateescu - Romania
Prof. Geraldine Wright - United Kingdom
Dr. Fani Hatjina - Greece
Prof. Norberto Luis Garcia - Argentina
Dr. Lucas Alejandro Garibaldi - Argentina
Dr. Nicola J. Bradbear - United Kingdom
Etienne Bruneau - Belgium
Maria Alejandra Palacio - Argentina

APITHERAPY COMMISSION
BEE BIOLOGY COMMISSION
BEE HEALTH COMMISSION
BEEKEEPING ECONOMY COMMISSION
POLLINATION AND BEE FLORA COMMISSION
RURAL DEVELOPMENT COMMISSION
TECHNOLOGY AND QUALITY COMMISSION
Economic anomalies

Etienne Bruneau
Apimondia Federation

Few countries and operators are heavily involved in the international trade in honey. A detailed analysis of the honey on the marketplace is possible and can draw attention to elements that may be considered suspicious. These economic or statistical «anomalies» should draw the attention of potential buyers and controllers to the presence of potential problems for a particular source of honey. A honey fraud mitigation guidance includes an evaluation of indicators like: less-than-market or unusually stable pricing, large price variation for honey from a country according to destination (quality) requirements, unexpected increases of exportation volumes (no correlation with the real potential of production) from a particular country or region, or high correlation between increasing imports and exports from a country. This presentation will illustrate few of these cases through several key operators.

Pure and Authentic Honey in Human Health

Cristina Mateescu
Apimondia Federation

According to Codex Alimentarius “Consumers have the right to receive truthful information about the food that they are going to consume!” All definitions make it clear that honey is a completely natural product. As such, the Codex specifies that no food additives are permitted in honey and even the product stored in the cells of the honeycomb when bees are fed sugar or syrups cannot be considered to be honey. Although some countries permit the sale of manufactured substitutes for honey so long as these are not deceptive, other countries specifically prohibit the sale of products described as “artificial honey” or “imitation honey”.

A simple question arises: “Do we know what we eat? How pure is the honey that we eat? The effects of adulterated honey consumption towards human health is not widely known and this is happening mainly due to lack of systematic and scientific studies and the low public awareness. The food label offers information about the ingredients and part of the food composition as salt, added sugars, total fat, saturated fats and cholesterol. Studies show that added sugars can be empty calories that increase the risk for obesity, heart disease, high blood pressure, liver diseases and even cavities. However, the usefulness of the information on the label, in order to choose the right food, depends on the consumer to have an education on the main concepts of food and nutrition and to read them. In general, and unfortunately, the nutritional value of a specific food product is not one of the main criteria on its election, the price, availability and sensory properties (flavor) of the product being the main ones.

More 300 types of honey are recognized today. These varieties are related to various types of nectar or honeydew collected by honeybees (bees). Pure and authentic such honeys have higher nutritional value, contain specific biological active compounds with stronger activities, while adulterated honey (irrespective of the type of adulteration) has a low nutritional value and sometimes unpleasant, even dangerous effects on human health. The beneficial effects of pure and authentic honeys vs. adulterated honeys will be discussed.
The B-GOOD project aims to test and implement a common index for measuring and reporting honey bee health status (= Health Status Index, HSI), which will aid risk assessors, authorities and the plant protection and veterinary medicines industries to measure health status in real time and across geographical locations, as well as evaluating the effect of (beekeeping) management decisions and actions. Data collection on colony (health) status related components occurs according to a 3-tiered process that spans three bee seasons. New innovative tools will soon be available and will provide additional information about, among other things, vibrational communication, gas composition in the hive and the genetic predisposition of resilience of the colony. Our socio-economic study has identified 18 key attention points for policy and strategy development. We have laid the foundation for a dynamic landscape model across the EU, capturing the major floral (beekeeping) management decisions and actions. Further investigation will incorporate microbiological screening test on P. larvae isolates from previously collected library using media with 2 μg/mL OTC as a susceptibility cut-off. Additionally, isolates that exhibit resistance on selective plates were used to determine minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). We found that 66 out of 718 P. larvae isolates were resistant to OTC with MIC and MBC values ranging from 64 to 256 μg/mL and 128 to >256 μg/mL, respectively. Resistance of OTC - resistant P. larvae isolates were found in Northeast Saskatchewan within a 240 km area, which could indicate their close clonal relationship. These results show the existence and circulation of OTC - resistant P. larvae isolates in Saskatchewan commercial beekeeping operations, despite the majority of tested isolates being susceptible. Furthermore, these results may reflect the potential for a decline in the efficacy of an OTC – based metaphylactic approach for the prevention of AFB. Further investigation will incorporate microbiological screening for tylosin and inconnycin as well as whole genome sequencing to fully describe the resistome of P. larvae in Saskatchewan.

The B-GOOD project aims to test and implement a common index for measuring and reporting honey bee health status (= Health Status Index, HSI), which will aid risk assessors, authorities and the plant protection and veterinary medicines industries to measure health status in real time and across geographical locations, as well as evaluating the effect of (beekeeping) management decisions and actions. Data collection on colony (health) status related components occurs according to a 3-tiered process that spans three bee seasons. New innovative tools will soon be available and will provide additional information about, among other things, vibrational communication, gas composition in the hive and the genetic predisposition of resilience of the colony. Our socio-economic study has identified 18 key attention points for policy and strategy development. We have laid the foundation for a dynamic landscape model across the EU, capturing the major floral (beekeeping) management decisions and actions. Further investigation will incorporate microbiological screening test on P. larvae isolates from previously collected library using media with 2 μg/mL OTC as a susceptibility cut-off. Additionally, isolates that exhibit resistance on selective plates were used to determine minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). We found that 66 out of 718 P. larvae isolates were resistant to OTC with MIC and MBC values ranging from 64 to 256 μg/mL and 128 to >256 μg/mL, respectively. Resistance of OTC - resistant P. larvae isolates were found in Northeast Saskatchewan within a 240 km area, which could indicate their close clonal relationship. These results show the existence and circulation of OTC - resistant P. larvae isolates in Saskatchewan commercial beekeeping operations, despite the majority of tested isolates being susceptible. Furthermore, these results may reflect the potential for a decline in the efficacy of an OTC – based metaphylactic approach for the prevention of AFB. Further investigation will incorporate microbiological screening for tylosin and inconnycin as well as whole genome sequencing to fully describe the resistome of P. larvae in Saskatchewan.

The B-GOOD project aims to test and implement a common index for measuring and reporting honey bee health status (= Health Status Index, HSI), which will aid risk assessors, authorities and the plant protection and veterinary medicines industries to measure health status in real time and across geographical locations, as well as evaluating the effect of (beekeeping) management decisions and actions. Data collection on colony (health) status related components occurs according to a 3-tiered process that spans three bee seasons. New innovative tools will soon be available and will provide additional information about, among other things, vibrational communication, gas composition in the hive and the genetic predisposition of resilience of the colony. Our socio-economic study has identified 18 key attention points for policy and strategy development. We have laid the foundation for a dynamic landscape model across the EU, capturing the major floral (beekeeping) management decisions and actions. Further investigation will incorporate microbiological screening test on P. larvae isolates from previously collected library using media with 2 μg/mL OTC as a susceptibility cut-off. Additionally, isolates that exhibit resistance on selective plates were used to determine minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). We found that 66 out of 718 P. larvae isolates were resistant to OTC with MIC and MBC values ranging from 64 to 256 μg/mL and 128 to >256 μg/mL, respectively. Resistance of OTC - resistant P. larvae isolates were found in Northeast Saskatchewan within a 240 km area, which could indicate their close clonal relationship. These results show the existence and circulation of OTC - resistant P. larvae isolates in Saskatchewan commercial beekeeping operations, despite the majority of tested isolates being susceptible. Furthermore, these results may reflect the potential for a decline in the efficacy of an OTC – based metaphylactic approach for the prevention of AFB. Further investigation will incorporate microbiological screening for tylosin and inconnycin as well as whole genome sequencing to fully describe the resistome of P. larvae in Saskatchewan.

The B-GOOD project aims to test and implement a common index for measuring and reporting honey bee health status (= Health Status Index, HSI), which will aid risk assessors, authorities and the plant protection and veterinary medicines industries to measure health status in real time and across geographical locations, as well as evaluating the effect of (beekeeping) management decisions and actions. Data collection on colony (health) status related components occurs according to a 3-tiered process that spans three bee seasons. New innovative tools will soon be available and will provide additional information about, among other things, vibrational communication, gas composition in the hive and the genetic predisposition of resilience of the colony. Our socio-economic study has identified 18 key attention points for policy and strategy development. We have laid the foundation for a dynamic landscape model across the EU, capturing the major floral (beekeeping) management decisions and actions. Further investigation will incorporate microbiological screening test on P. larvae isolates from previously collected library using media with 2 μg/mL OTC as a susceptibility cut-off. Additionally, isolates that exhibit resistance on selective plates were used to determine minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). We found that 66 out of 718 P. larvae isolates were resistant to OTC with MIC and MBC values ranging from 64 to 256 μg/mL and 128 to >256 μg/mL, respectively. Resistance of OTC - resistant P. larvae isolates were found in Northeast Saskatchewan within a 240 km area, which could indicate their close clonal relationship. These results show the existence and circulation of OTC - resistant P. larvae isolates in Saskatchewan commercial beekeeping operations, despite the majority of tested isolates being susceptible. Furthermore, these results may reflect the potential for a decline in the efficacy of an OTC – based metaphylactic approach for the prevention of AFB. Further investigation will incorporate microbiological screening for tylosin and inconnycin as well as whole genome sequencing to fully describe the resistome of P. larvae in Saskatchewan.

The B-GOOD project aims to test and implement a common index for measuring and reporting honey bee health status (= Health Status Index, HSI), which will aid risk assessors, authorities and the plant protection and veterinary medicines industries to measure health status in real time and across geographical locations, as well as evaluating the effect of (beekeeping) management decisions and actions. Data collection on colony (health) status related components occurs according to a 3-tiered process that spans three bee seasons. New innovative tools will soon be available and will provide additional information about, among other things, vibrational communication, gas composition in the hive and the genetic predisposition of resilience of the colony. Our socio-economic study has identified 18 key attention points for policy and strategy development. We have laid the foundation for a dynamic landscape model across the EU, capturing the major floral (beekeeping) management decisions and actions. Further investigation will incorporate microbiological screening test on P. larvae isolates from previously collected library using media with 2 μg/mL OTC as a susceptibility cut-off. Additionally, isolates that exhibit resistance on selective plates were used to determine minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). We found that 66 out of 718 P. larvae isolates were resistant to OTC with MIC and MBC values ranging from 64 to 256 μg/mL and 128 to >256 μg/mL, respectively. Resistance of OTC - resistant P. larvae isolates were found in Northeast Saskatchewan within a 240 km area, which could indicate their close clonal relationship. These results show the existence and circulation of OTC - resistant P. larvae isolates in Saskatchewan commercial beekeeping operations, despite the majority of tested isolates being susceptible. Furthermore, these results may reflect the potential for a decline in the efficacy of an OTC – based metaphylactic approach for the prevention of AFB. Further investigation will incorporate microbiological screening for tylosin and inconnycin as well as whole genome sequencing to fully describe the resistome of P. larvae in Saskatchewan.
OP-012 [Bee Health]

Analysis of Pathogens Associated with Winter Colony Losses in Canada

Stephen F. Pernal1, Renata Borba1, Shelley E. Hoover1, Robert W. Currie2, M. Marta Guarna1, Amro Zayed1, Leonard J. Foster3

1Agriculture & Ag-Food Canada, Beaverlodge Research Farm, Beaverlodge, AB, Canada, TOH 0C0
2Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
3Department of Entomology, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2

Canadian beekeepers report that high pathogen/parasite infestation levels, poor queen quality and severe weather conditions are the leading causes of elevated wintering losses. In order to replenish annual losses or maintain their operations, beekeepers in Canada face a unique and difficult situation for purchasing new queens or package bees. Scarce local supply drives local producers to import approximately 300,000 queens and package bees each year, predominantly from foreign sources. This large-scale importation of stock may contribute to the introduction of undesirable pathogens or genetics, and supply bees that have not been selected to survive and prosper in northern temperate climates, thereby influencing wintering success.

Honey bees act as a host for a multitude of pathogens and parasites. Nevertheless, the interactive effects of these pathogens, endoparasites and ectoparasites have on colony wintering success remains poorly understood. In order to better understand these interrelationships, we studied colony health and wintering success as a part of a national-scale study in Canada. In 2016 and 2017, we sampled 1025 and 520 colonies, respectively, across five Canadian provinces. During each experimental year (May through April), we collected pre-winter phenotypic data (fall colony weight and cluster size), and samples for pathogen analysis (*Kosemo spp.*, *Lomarma passivm*, DWV-A, DWV-B, BCov, SBV, and poletic loads of *Varnoa destructor*) from colonies in all locations to investigate the main factors affecting colony health. We also studied colonies wintered outdoors, as well as those wintered inside specialized wintering facilities. Although winter mortality was statistically higher between 2016 and 2017, indoor-wintered colonies had greater survival than those wintered outdoors (92% vs. 77%). Irrespective of wintering method, consistent influences were seen across both experimental years, based on logistic regression modeling. Elevated levels of DWV-A, DWV-B, BCov and fall pheromone mist load increased the risk of colony death during winter, whereas higher fall colony weights, larger cluster sizes and increased sealed brood areas exerted positive influences on survival outcomes.

Effect of abscisic and p-coumaric acids as food supplements and stimulants of the cellular immunological systems of *Apis mellifera*

Elisa Chavez Hernandez1, Gabriell Otero Colina1, Celina Llanderal Caceres1, Matias Maggi Daniel2, Sostenes Rafael Rodriguez Dehabsen, Laura Soto Rojas1, Marisol Karina Rocha Martinez1, Juan Diego Perez De La Rosa1, Rafael Lagunas Zapata3, Martin Javier Eguaras2

1Postgrado en Fitosanidary, Colegio de Postgraduados, Estado de México, México
2Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
3Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz, México

Honey bee colonies known as *Apis mellifera* scutellata haplotype A1 were administered with a food supplement of sugar syrup, pollen with 10% p-coumaric acid (PCUM) and abscisic acid (ABA) to test its supposed antioxidant effects, abscisic acid (ABA) to test whether it promotes innate immunity in bees, the combination of both (ABACUM), and syrup as a control. During three months, the number of hemocytes per pollen reserves, as well as the accumulation and concentration of hemocytes in worker bees were counted. Besides, *Varnoa destructor* and *Nosema ceranae* were monitored. At the concentration used, ABA and CUM had no effect on worker honey bees, whereas ABA and PCUM increased the number of cells with brood or with honey and pollen reserves between the beginning and the end of the study. Regarding the monitoring of *V. destructor*, there were no significant differences between treatments; this mite did not cause obvious damage, seemingly because the experimental colonies did not have enough pollen reserves in its insectary. Hemocytes were no significant differences between treatments in infection by *N. ceranae*: however, there was a significant decrease in intensity, prevalence, and abundance of spores between the beginning and the end of the study, which was associated with the fact that the bees collected nectar, and this resulted in the development of colonies. The number of hemocytes did not show a significant difference between treatments, but was a positive increase between the first and the last valoration. Neither ABA, CUM or ABACUM produced the predicted effects on the experimental bees. The results found in africanized hybrids in Mexico differ from those reported in Argentina with European bees where the findings are significant in the development of the colonies, which suggests the resistance or adaptation of Africanized hybrids of honey bees to tropical regions.

OP-016 [Bee Health]

*Pathophysiological Effects of the Microsporidium *Nosema ceranae* Infection on Worker Honey Bees (Apis mellifera)*

Sehat Selmar1, Anthony James Neaman2, Dennis Vanengelsdorp3

1Agriculture Research Institute, Ordu, Turkey
2College of Computer, Mathematical, and Natural Sciences, Department of Entomology, University of Maryland, MD, USA

Nosema ceranae is an important stressor in honey bee colonies all over the world. *N. ceranae* infection can potentially cause severe disease and economic losses in the industry if left untreated. We conducted a laboratory study to investigate the mechanisms by which *N. ceranae* infection affects *A. mellifera* colonies. We used apiary samples from the National Honey Bee Disease Survey (NHBS). First, we dissected and scored specific tissues of the bee and calculated scores of bees coming and going from brood frames with *N. ceranae* loads. By this, we found there is a subset of physiological traits with different manifestation patterns between apiaries that had high *N. ceranae* loads and the control apiaries. Our comparison demonstrated that bees coming from apiaries with high *N. ceranae* exposure tend to have more discolored venom sacs, more melanized tissues, more white nodules, and more melanization on their sting glands. This suggests that associations between *N. ceranae* and physiological changes in honey bees can be discovered through a pathophysiological approach.
Chitosan-based gel application on model bees (Apis mellifera L.) for healing bite wounds caused by Varroa destructor

Adı Özbek1, Bilir Küküşçümez2
1Department of Biology, Hacettepe University, Ankara, Turkey
2Department of Biology, Hacettepe University, Ankara, Turkey; Bee and Bee Products Application and Research Center, Hacettepe University, Ankara, Turkey

Chitin is basically responsible for protecting the body of honey bees against external attacks due to its hard cellulose structure. The chitin-structured body of honey bees is destroyed by Varroa destructor, the world’s most devastating pest of Western honey bees; causes honey bee decline. Varroa harms honey bees not only by feeding but also by the wounds it inflicts. Varroa bites cause a hole in the centre of the wound, which is a source of bacterial infection. In this study, the aim was to investigate the potential application of a chitosan-based gel to recover the chitin layer. The experiment was set up in eight cages. Varroa bites were artificially created on experimental bees called as model honey bees in cages. Different solutions of a chitosan-based gel at different doses were applied to the cages. Results revealed that Varroa bite wounds do not heal until day 9 in control cages. Healing of wounds by chitosan-based gel application on 1-3 and 3-6 days showed dose dependence. In addition, the gel prevented hair loss in honey bees, which was observed as a side effect of Varroa infestation. In addition, chitosan dissolved in organic acids is a key advantage for the treatment of V. destructor in parallel with wound healing.

American foulbrood risk assessment: Paradigm shift from an individual hive to a “herd health monitoring” in Canadian beekeeping industry

Michael W. Zabrodski1, Tasha Epp2, Geoff Wilson3, Sarah C. Wood1, Ivanna V. Kozi1, Oleksii Obhta1, Jenna Thebeau1, Sarah Biganski1, Fatima Masood4, Fahim M. Raza5, Midhun S. Jose1, Marina C. B. Silva1, Roman V. Koziy1, Antonio C. Ruzzini1, Elemir Simko1
1Department of Biology, Hacettepe University, Ankara, Turkey
2Department of Plant Protection, Faculty of Agriculture, Lebanese University
3Ministry of Agriculture, Government of Saskatchewan, Prince Albert, Canada
4Agriculture and Agri-Food Canada, Beaverlodge, Alberta, Canada
5British Columbia Blueberry Council, Abbotsford, British Columbia, Canada

The North American beekeeping industry is heavily reliant on antimicrobial metaphylaxis to prevent and control outbreaks of American foulbrood (AFB). The infectious spores of Paenibacillus larvae, are incredibly resilient and impervious to antimicrobials licensed for use against AFB in North America. Consequently, non-curative indiscriminate antibiotic use is frequently practiced to ensure industry profitability in the face of growing international concern regarding antimicrobial resistance (AMR). North American beekeepers are inadequately prepared to reduce their reliance on antimicrobials without risk of significant economic losses to AFB. Current methodology to guide evidence-based antimicrobial use through AFB risk assessment relies on the sampling and testing of individual hives and is logistically impossible for large-scale, commercial beekeeping operations to implement. To address this issue, we evaluated the use of spore detection in conveniently collected, pooled, extracted honey to determine AFB risk at an apiary or commercial operation level within antibiotic-reliant apiculture. Large-scale, commercial honey bee operations in Saskatchewan, Canada, with a history of antimicrobial use and recent outbreaks of AFB were clinically characterized and opportunistically sampled to compare the detection of spores and predictive ability of pooled, extracted honey to the current standard of samples (e.g. brood chamber honey and/or adult bees) collected from individual hives. We demonstrated that pooled extracted honey was predictive of the spore contamination identified through individual hive testing and appeared to have prognostic value in assessing the risk of AFB at the yard or operation level. Accordingly, we expanded our testing of pooled extracted honey to 52 Saskatchewan commercial beekeepers representing approximately 75% of the province’s 110,000 registered colonies. By correlating spore concentrations to the incidence of AFB, we established reliable prognostic threshold at 2 spores per gram of pooled extracted honey for low risk category of AFB. Accordingly, our study suggest that beekeepers who are at low risk of AFB (less than 2 spores/g in pooled extracted honey) may temporarily cease antimicrobial metaphylaxis providing that ongoing monitoring and other AFB integrated management practices are implemented. Improved evidence-based antimicrobial use in apiculture will reduce the threat of AMR and will help to ensure the sustainability of the North American industry.

Does fungicidal exposure or increased bacterial virulence predispose honey bees to European foulbrood during blueberry pollination in north america?

Jenna M. Thebeau1, Alyssa Cloet1, Dana Liebe1, Fatima Masood2, Ivanna V. Kozi1, Roman V. Koziy1, Michael W. Zabrodski1, Sarah Biganski1, Oleksii Obhta1, Fahim M. Raza5, Midhun S. Jose1, Marina C. B. Silva1, Eric M. Gerbrandt5, Antonio Ruzzini1, Igor Moshinsky1, Laronda Sobchishin1, Geoff Wilson3, M. Marta Guarna4, Elemir Simko1, Sarah C. Wood1
1Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
2Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
3Ministry of Agriculture, Government of Saskatchewan, Prince Albert, Saskatchewan, Canada
4Agriculture and Agri-Food Canada, Beaverlodge, Alberta, Canada
5British Columbia Blueberry Council, Abbotsford, British Columbia, Canada

Honey bee pollination is essential to the profitability of commercial blueberry production in North America. Unfortunately, blueberry growers face a scarcity of commercial pollination services, in part due to outbreaks of European foulbrood disease in blueberry-pollinating honey bee colonies, which can have catastrophic economic consequences for affected beekeeping operations. To understand the predisposing factors for European foulbrood during blueberry pollination, we used an in vitro larval infection model to investigate the effect of chronic fungicidal exposure and bacterial virulence on honey bee larval susceptibility to European foulbrood. We found that larvae chronically exposed to a combination of four, formulated fungicidal products used in commercial blueberry production had significantly reduced survival, by 24% (p<0.0038), from European foulbrood relative to infected controls, while exposure of larvae to these fungicidal products individually, at the same field-realistic concentrations, did not decrease larval survival from this disease. Additionally, we isolated highly pathogenic strains of Melissococcus plutonius, the etiologic bacterium of European foulbrood, from both blueberry-pollinating and non-blueberry pollinating colonies, suggesting that increased M. plutonius virulence does not explain the empirical association of European foulbrood associated with blueberry pollination. Future and ongoing work will characterize the pathogenicity of additional isolates of M. plutonius, as well as test the effect of fungicidal exposure on larval susceptibility to European foulbrood using an in vivo, colony infection model of this disease.

Comparative study between four essential oils, chemical and physical treatments against “Varroa destructor” on “Apis mellifera ligustica”

Panayi Daliadis, Elias Espenerace, Ghanem Hassania, Obeid Dany
Department of Plant Protection, Faculty of Agriculture, Lebanese University

The effectiveness of four essential oils: jasmine oil, neem oil, black cumin oil, and sage oil and a chemical insecticide Apistan® (Fluvalinate 20%) and a physical method (sugar garlic powder dusting) were tested against the honeybee parasitic mite, “Varroa destructor”. Cotton strips saturated with the tested substances were suspended between the middle combs in all treatments during the study and replaced weekly by newly ones. The experiment was carried out with seven groups of three hives containing “Apis mellifera ligustica”. Levels of infestation with “Varroa destructor” in both the brood and adult honeybees were estimated before and after the treatment, and the fallen mites were counted weekly. A significant difference between the level of infestation on adult bees among treatment groups and the control (p=0.000+0.039) was observed. The number of fallen mites increased weekly to reach a maximum rate of mortality in the fourth week in the different treated groups. However, Fluvalinate and saw oil induced the highest larval survival from this disease. Additionally, we isolated highly pathogenic strains of Melissococcus plutonius, the etiologic bacterium of European foulbrood, from both blueberry-pollinating and non-blueberry pollinating colonies, suggesting that increased M. plutonius virulence does not explain the empirical association of European foulbrood associated with blueberry pollination. Future and ongoing work will characterize the pathogenicity of additional isolates of M. plutonius, as well as test the effect of fungicidal exposure on larval susceptibility to European foulbrood using an in vivo, colony infection model of this disease.
Trans-generational immune priming in honeybees can be utilized to create vaccines against bee diseases

Dalal Freitak1, Dalal Freitak2
1Institute of Biology, University of Graz
2Dalal Animal Health, Inc.

Devastating diseases threaten honeybees and a deeper understanding of the honeybee's immune system is critical to help develop better tools to help protect them from diseases. Insects lack antibodies, the carriers of immunological memory that vertebrate mothers transfer to their offspring. Yet, it has been shown that an insect mother facing pathogens can prime her offspring's immune system. A little is known how insects achieve trans-generational immune priming despite the absence of antibody-based immunity. Here, we show that in honeybees fragments of bacteria bind to the egg-yolk protein vitellogenin and are then carried to eggs. This discovery has for the very first time shown the mechanism behind trans-generational immune priming in insects. This type of natural1 vaccination2 of the offspring via the mother takes place against different diseases. Furthermore, we show, that honeybee queens orally exposed to pathogen fragments can enhance the immunity of their offspring against diseases. This creates a powerful platform to develop vaccines for beneficial insects.

EUBP Platform: Collective approach to understanding pollinator trends and threats

Nea Simon Delso1, Kata Gócs1, Gregor Susanj1, Gilles San Martin2, Michael Rubinić3
1BeeLife European Beekeeping Coordination, Brussels, Belgium
2Valloon Agricultural Research Centre, Gembloux, Belgium
3Steirischer Landsverband für Bienenzucht, Graz, Austria

It is well established that insect pollinators’ numbers, diversity and density have severely decreased over recent years in Europe and worldwide. These trends are worrying when considering that nearly 90% of flowering plants depend on pollinators by animals to some extent, while more than 75% of leading global food crops do, and in Europe, more than 80% of food crops rely to some extent on invertebrates for pollination. Therefore, many sectors and actors depend on pollinators and pollination for their activity, ranging from beekeepers; providers of pollination services, farmers and the agricultural production of pollinator-dependent crops and related agri-food sector; to research on pollinators, pollination and assessment of the environment through them. As a consequence, bees and other insect pollinators are taking increasing relevance in the public debate and growing efforts have been put over the years to understand these trends and the factors that may affect them. Related data have been/is produced by different institutions and actors, with various purposes and in multiple formats, making it impossible to obtain a clear picture of the situation and more importantly, the possibilities to reverse the trends. In Europe, stakeholders came together to share data. The EU Bee Partnership was created and they established a consortium of partners developing an innovative technology in the field of information and communication applied to the environment: The EUBP Platform. The project includes activities of technical development (software and infrastructure development) and data and quality management (data acquisition, management, processing, integration, visualisation, security). The EUBP platform aims to transform segregated data into the reference tool for those seeking information or whose activity depends on pollinators and pollination, and need to adapt their activities to manage the drivers determining their fate.

Identification of Stingless Bee Honey

Ismail Emir Akyıldız, Özge Erdem, Sinem Raday, Sezer Acar, Dilek Uzungör, Emel Damarlı
Altıparmak Food Co. R&D Center 34782 Istanbul, Turkey

It has been documented that stingless bee honey has a different composition than Apis mellifera honey. Souza et al. (2014) proposed a quality standard for stingless bee honey samples from Brazil, Costa Rica, Mexico, Panama, Surinam, Trinidad, Tobago and Venezuela. In the Asian region, we hypothesize that the diverse pollen and nectar sources found in stingless bees will greatly affect the physico-chemical properties of honey that they produce. This discussion aims to highlight the potential threats to stingless bee keeping and formulate the corresponding management practices to make it a sustainable enterprise for livelihood opportunities and pollination services. It will also craft standard for honey, which could be produced following the best bee keeping practices.

Chromatographic Determination of Foreign Diastase Adulterated Honey by Harnessing the Enzyme-Origin Differences

Ismail Emir Akyıldız, Özge Erdem, Sinem Raday, Sezer Acar, Dilek Uzungör, Emel Damarlı
Altıparmak Food Co. R&D Center 34782 Istanbul, Turkey

There is a number of studies in the literature that present plausible adulteration markers or assays such as quantification of AFGP, arsenic, detection of DFA, or C4-% (SCIRA) analysis for corn syrup identification to detect honey adulteration. There are also enzymatic assays and to name but a few are heat-stable diastase, foreign invertase and, beta/gamma amylase. The addition of an enzyme to honey with a foreign origin is carried out to increase the diastase (alpha-amylase) value, which is considered as a critical quality parameter. Typically, diastase assays are used for verification purposes. It can be said that the developed method can reliably detect the presence of foreign diastase in multiple formats, making it impossible to obtain a clear picture of the situation and more importantly, the possibilities to reverse the trends. In Europe, stakeholders came together to share data. The EU Bee Partnership was created and they established a consortium of partners developing an innovative technology in the field of information and communication applied to the environment: The EUBP Platform. The project includes activities of technical development (software and infrastructure development) and data and quality management (data acquisition, management, processing, integration, visualisation, security). The EUBP platform aims to transform segregated data into the reference tool for those seeking information or whose activity depends on pollinators and pollination, and need to adapt their activities to manage the drivers determining their fate.

Identification of the Rice Syrup Adulterated Honey by Introducing a Candidate Marker Compound for Brown Rice Syrups

Dilek Uzungör, Ismail Emir Akyıldız, Sinem Raday, Sezer Acar, Özge Erdem, Emel Damarlı
Altıparmak Food Co. R&D Center 34782 Istanbul, Turkey

Identification of honey adulteration is an important area to ensure product safety and quality. White rice syrups (WRS)
or brown rice syrups (BRS) can be used for honey adulteration. Up to date, qualitative analysis of 2-acetylfran-3-glucopyranoside (AFGP) and the quantification of the arsenic residue are the commonly preferred methods to detect rice syrups (RS). We have figured out that the BRS may have a very low amount of AFGP. Therefore, it was estimated that AFGP alone may not be a very reliable marker for BRS identification. We aimed at identifying a new marker compound for BRS and to develop a novel analytical method that allows simultaneous monitoring of this compound and AFGP to highlight the addition of RS from different origins. The characteristic molecule in BRS was identified as sorbic acid. A UHPLC-MS/MS method was developed by combining dilute & shoot sample pretreatment and 107 samples were analyzed. While 21 of the samples were found adulterated with BRS, 3 samples were found to contain WRS. We suggest using sorbic acid as a marker of BRS addition to honey. Within this research, it was hypothesised that fraud was mostly made with BRS, and adulteration may be overlooked applying the existing methodology.

OP-027 [Beekeeping Technology and Quality]

Honey Adulteration Testing Update

Klaus Beckmann
Intertek Food Services GmbH, Bremen, Germany

Novel and sophisticated authenticity testing methods have been developed in recent years with the aim of detecting foreign sugars in honey. Besides the long established 13C-LC-IRMS method, Nuclear Magnetic Resonance (NMR) and High Resolution Mass Spectrometry (HRMS) emerged as the most powerful techniques, being capable of covering a multitude of adulteration parameters in a single run.

This presentation will first provide an overview about possible types of foreign sugars and its ways how they are introduced into the honey. The most important and requested analyses will be described, in the context of their individual advantages and disadvantages.

The fundamental base for these two techniques are databases, which are typically not disclosed and remain subject to intellectual property of the respective organization, raising concerns in the wider community of a lack of harmonization between the testing bodies. The presentation will outline the approaches to bring the results and assessments into accordance, and the current state will be discussed.

OP-028 [Beekeeping Technology and Quality]

Tackling honey fraud by identifying functional relationships between adulteration tests – a correlation analysis to improve efficiency and cost effectiveness

Uta Peters1, Kaja Sender2
1Eurofins Food Integrity Control Services GmbH
2Hochschule Bremerhaven

Economically motivated adulteration in honey can occur in multiple ways. Most common is honey adulteration by direct or indirect addition of foreign sugars that are practically invisible in the honey matrix. These foreign sugar sources are often made through break-down of starch-based products or by inversion of sucrose. In case of high-priced honeys, such as Manuka, the addition of lower-priced honeys can be used to increase the profitability.

To detect the different methods of exogenous sugars addition a steadily increasing number of analytical procedures had to be developed.

Eurofins offers for example more than 20 analysis, which can be utilized to investigate the authenticity of honey. However, since the application of all possible tests is very expensive a selective choice of methods based on risk assessment for adulteration has become established.

Comparing data of different analysis might reveal additional information to the plain results of each single method and therefore allow a deeper understanding of authenticity testing in honey.

The main benefits are an improved overall authenticity verification with a simplified testing scheme, higher certainty and accuracy as well as a significant reduction in effort and testing costs.

Therefore, Eurofins Food Integrity Control Services GmbH has started to conduct a correlation analysis using about 10,000 samples on which different authenticity tests were performed to identify functional relationships between the single methods and their results.
Analysis of volatile compounds – fingerprinting of mono-floral honeys
Peter Tebbe
Intertek Food Services GmbH, Bremen, Germany

Volatiles compounds can have a significant influence on the quality and the organoleptic properties of honey. The composition of these compounds in honey is already well known and it can vary by the botanical origin, the geographical origin or due to influences during production or processing. However, there are only few techniques focusing on the volatile compounds in routine honey analysis.

In this presentation a new untargeted method using head-space gas chromatography coupled with ion mobility spectrometry for the analysis of volatile compounds in honey is introduced.

For this approach a broad range of different verified monofloral honeys were analyzed by this technique to obtain their ‘volatile fingerprint’. These fingerprints were then analyzed by multivariate data analysis for differentiation and prediction of the analyzed groups. This presentation will discuss the suitability of this approach for the determination of the botanical origin for monofloral honeys and will give further information about other possible application (off-flavor, process influences, carry-over) of this technique for honey analysis.

OP-032 [Beekeeping Technology and Quality]
A robotized light microscope system for automated melissopalynology analysis of honey. Accurate and real-time pollen recognition powered by deep learning networks
Pau Cardellach Lliso
Sonicat Systems

Melissopalynology is a widely used science within the honey industry, allowing the geographic and botanical determination of bee products, based on the diversity and proportion of nectariferous and/or polliniferous pollen types (PT).

Traditionally, the classification and counting of PT to characterize honey is manually carried out by expert palynologists through a light microscope. This technique is complex, labor-intensive, and usually presents low reproducibility and repeatability between measurements made by different technicians or laboratories, due to subject to human error. The main objectives of Honey.AI are to automate and standardize the pollen analysis in honey, using a low-cost robotized optical microscope coupled with computer vision and an Artificial Intelligence solution. Honey.AI recognizes more than 30 nectariferous (countable) PT, more than 40 non-nectariferous (non-countable) PT, and non-pollen elements, such as botanical species producing unifloral honey in Europe with high precision, such as Calluna vulgaris, Tradescantia ohiensis, Centaurea siliqua, Citrus sp., Brassica napus, Erica sp., Eucalyptus sp., Helianthus annuus, Lavandula sp., Prunus sp., Robinia pseudacacia, Rosmarinus officinalis, Rubus sp., Thymus sp., Tilia sp. and Vaccinium sp. inter alia.

In every test, the system counts at least 500 pollen grains, 400 nectariferous PT, and 100 sites. It takes from 15 to 90 minutes. The percentage is presented considering the total pollen content, as well as the value corrected, considering only the nectariferous species. Technical validation showed a precision between 0.9 and 0.98 (varies according to species), a 1-2% variability regarding repeatability and a 3-4% regarding reproducibility. Since neural networks are continually being trained, the number of botanical species and the accuracy of the analysis improves both every day.

Finally, to obtain a better honey characterization, Honey.AI also performs yeasts analysis, and is able to quantify the crystallization percentage of the sample with great sensitivity. Other future updates of the system are currently under development, like Pfund scale color measurement, honeyed analysis, and starch detection.

Active and efficient honeybee probiotics against AFB disease
Ivan Soven
Bee Health and Feeding Department, Turkish Biologists Association, Izmir, Turkey

The innovative aspect of the project is to obtain an alternative product, by obtaining a highly stable probiotic mixture that strengthens the immune system of the bee against many bee pathogens, existing in nature and in the intestines of bees, and by phagocyte in microbial mixture with a high shelf life, ensuring the prevention or elimination of bee diseases.

An important pathogen American foulbrood (AFB) is a highly lethal disease that affects honey bees (Apis mellifera). The causative organism, Paenibacillus larvae, attacks honey bee brood and renders entire hives dysfunctional during active disease states, but more commonly it is found asymptotically in hives as inactive spores that escape even from vigilant beekeepers. This spore-forming bacterium, which affects honey bee brood and causes AFB, infects honey bees during early development and releases secondary metabolities (which have antimicrobial properties against microbial competitors) and chinin-degrading enzymes (which allow degradation of the midgut epithelium, can kill offspring.

An alternative method considered for the prevention of AFB is to supplement the colonies with beneficial bacteria such as Lactobacillus spp. Findings from model systems are illustrated in several important literatures that support this approach by various Lactobacillus species. In addition, it can be said that resistance factors that occur with antibiotic application will not occur with probiotic application. Long-term benefits to honey bee longevity have been observed following relatively short periods of probiotic supplementation and without the need for host colonization. Our aim is to produce this product effectively with technologies for bees and to prevent bee loss.

Extensive studies have been carried out to identify suitable probiotic bacteria specific to honey bees. The main purpose of this research is not to increase honey production, but to control diseases; however, a healthier colony will certainly produce more honey. It has been shown that lactic acid bacteria isolated from honey bees have positive effects on bee health and reduce the incidence of pathogens. With the use of effective bee probiotics, stronger and more resistant bee colonies and higher yield and better pollination. Minimized colony collapses will be achieved.

How EM® probiotic for bees influence on gut microbiota composition of honeybees?
Ivana Tišak Gajger*, Saki Nagamoto†, Srebrenka Nježdić‡, Luka Cvetnić‡, Maja Ivan Smoški Šker†
1Faculty of Veterinary Medicine University of Zagreb, Zagreb, Croatia
2EM Research Organization Inc., Oikinawa, Japan
3Croatian Veterinary Institute, Zagreb, Croatia
4Agricultural Institute of Slovenia, Ljubljana, Slovenia

Multiple causal factors are considered to contribute to honeybee colony losses: parasites and pathogens, exposure to pesticides, diet quantity, quality and diversity, as well as unfavorable weather and forage circumstances. Also health status of honeybee colonies is highly influenced by beekeeper’s management practices. All these factors affect honeybee colonies individually or in various combinations, possible causing severe disturbance of honey bee intestinal microbiota composition. Adult honeybee dysbiosis - gastrointestinal microbial imbalance is linked to lower body weight, sluggish development, and early workers mortality. Furthermore, the altered microbiota is associated with host deficiencies when the environmental stressors could change gut bacterial balance and lead to visible manifestation of opportunistic diseases. Among them increased number of Nosema spp. spores in midgut, premature foragers and immune suppression linked with oxidative stress were reported. Intestinal microbiota of honeybees can provide novel insights into the pathogenesis-related factors involved in pathogen infection. Hence, we investigated the comparison of intestinal microbiota communities in control and Nosema ceranae infected groups of honeybee colonies through high-throughput sequencing of the 16S RNA. As a non-invasive method, we hypothesized that EM probiotic for bees could potentially have an important therapeutic and immunomodulatory effect on honeybee colonies. The aim of our study was to evaluate its impact on gut microbiota composition of honeybees. The 25 major genera with a total of more than 1000 OTUs were detected, with Lactobacillus being the most abundant genus, followed by Gilliamella, Snodgrassella and Bifidobacterium. In EM treatment groups Kluyvera, Klebsiella, Escherichia and Cedecea concentrations were higher than in control groups. This result indicates that continuous EM treatments shall clearly change bees gut microbiome composition. Snodgrassella alvi was a major member of the honeybee gut microbiota and may be significantly increased by long-term EM treatment. According to those results, it would be possible with EM treatments protect honeybees from herbicide negative effects (e.g., Glyphosate) in agricultural fields, by improving microbiome and immune functions.

*Correspondence: itisak@vet.hr, giorgi.gajger@med.uz.zagreb.hr
†EM Research Organization Inc., Oikinawa, Japan
‡Croatian Veterinary Institute, Zagreb, Croatia
§Agricultural Institute of Slovenia, Ljubljana, Slovenia
Plant derived molecules as alternative substitutes to control honey bee varroosis: Essential oils as a case study

Omar El Requin1, Abdessalam Aglagane2, Abdelaziz Abbada3, El Hassan El Moudden1, Mohamed Aeur1
1Department of Biology, Laboratory of Water, Biodiversity and Climate Change, Faculty of Science, Semlalia, Cadi Ayyad University, Marrakech, Morocco
2Department of Biology, Laboratory of Biodiversity and Ecosystem Functioning, Faculty of Science, Ibn Zohr University, Agadir, Morocco

The western honeybee (Apis mellifera L.) is one of the most important insect species that, unfortunately, is being confronted with multiple biological stressors that threaten their existence. Varroa destructor is a serious ectoparasitic mite of this valuable species. To control the infestation due to this parasite, synthetic acaricides were used. However, their overuse resulted in the development of Varroa resistance and residues accumulation in honey bee products. This situation has forced researchers to look for more natural alternatives including essential oils. The main objective of the present study was to evaluate under laboratory conditions the acute toxicity of essential oils (EOs) extracted from three Moroccan aromatic and medicinal plants, alone and in combinations against V. destructor and A. cerana using the mixture design approach. The GC/MS analysis indicated that the main chemical compounds of Mentha suaveolens subsp. dmja EO were menthone (40.1%) and pulegone (19.22%), whereas Chenopodium ambrosioides EO is rich in -terpinene (34.08%), isoascorbid (13.6%), p-cymene (10.85%), thymol (10.26%), ascorbic (10.25) and farcarol (7.7%). Laurus nobilis EO is mainly composed with 1,8-cineol (37.5%) and linalool (14.09%). The obtained results have indicated that the three tested EOs displayed interesting activity against V. destructor. The highest acaricidal potency was observed with the ternary combination (LD50= 1.560 µl/ L air). According to the combination index (CI) calculated by CompuSyn software, ternary blend proved to possess high synergistic effectiveness with C1 index of 0.343. All combinations have shown favorable dose reduction with DRI indexes greater than one. Results of this study suggest that these EOs and their combinations could present a promising solution to reduce the effective doses of EOs and constitute an alternative to the currently used acaricides.

Social and individual immunity following virus infection in honey bee (Apis mellifera)

Sopoah Victoria1, Tai Erez2, Elad Bonda3, Paz Cahanov3, Kaiar Wagoner4, Olof Rupell5, Nor Chejanovski1
1Dept. Entomology, Chemistry and Nematology, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
2Agroecology, Hebrew University of Jerusalem, Rehovot Israel
3Department of Biology, University of North Carolina Greensboro, USA
4Department of Biological Sciences, University of Alberta, Canada

Honey bee colonies are a fertile substrate for the development of pests and pathogens, on the other hand they have several defense mechanisms, social-behavioral and individual-physiological. The parasitic mite Varroa destructor (Varroa) and multiple viruses it vectors are major drivers of colony losses. Breeding for hygienic behavior, one of the major social defense mechanisms, is considered a sustainable way to reduce the impact of Varroa on honey bee health. However, concern has been raised recently that hygienic behavior may facilitate the horizontal transmission of viruses in honey bee colonies. In our study we aimed to evaluate whether there is a tradeoff between the social and individual defense mechanisms or do they contribute additively to the colony health. To discern between these two possibilities, we compared the Varroa infestation and Virus load between high hygienic and low hygienic colonies. In addition, the samples of workers tested for viral load were also tested for the expression of immune genes from four major immune pathways by qPCR. We found significantly lower Varroa infestation and DWV load in high hygienic colonies. In addition, these colonies also had a significantly higher expression of genes from two immune pathways. Taken together, these data indicate that both social and individual immune responses are working together to the benefit of honey bee health at the colony level.
Impact of intrauterine infusion of the honey/propolis mix in normal postpartum diary cows: Preliminary study

Begum Cicioglug Lefkoph1, Ali Torabi1, Willian Fahrid Huanca Mor1, Philippe Garcia2
1Department of Clinical Science, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada, GREQIP Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
2Bee-O-Pharm, 8220 Ch. De Shefford, Roxton Falls, Quebec, Canada

Uterine infection affects dairy cows during the postpartum period (PP) leading to poor reproductive efficiency and financial loss. The advocated treatment is intrauterine infusion of antibiotics. However, bee products have been widely documented for antimicrobial properties and therefore can constitute an alternative treatment for uterine infections. We hypothesize that honey is a good alternative to treat PP uterine infections in dairy cows. The objective of this preliminary study was to determine the acute clinical response of the endometrium to the intrauterine infusion of propomiel in normal postpartum dairy cows. In this study, 31 healthy cows with intact uterus were divided into 6 different groups: group 1 (n=6), 2 (n=5), and 3 (n=5) received an intrauterine infusion of 30 mL of propomiel, honey alone (n=6), and propomiel + benzathine (Hetrician, 640 µg, IU, Merk, Canada, positive control) respectively 30 to 50 days PP. In group 4 (n=3, negative control), cows were not infused. In groups 5 (n=8) and 6 (n=4), propomiel and honey alone were infused into the uterus of cows with more than 50 days PP respectively. Trans rectal ultrasound (T/R) vaginal examination, cytological and bacteriological evaluations of the uterus were done at 0 (before infusion), 48 h, 96 h, and 192 h. The cytological evaluation showed that the percentage of PMNs (polymorphonuclear cells) in the uterus reached the utmost level rapidly at 48h before returning to the initial level (time 0h) at 96 h in all treatment groups (P < 0.001, negative control) where no increase was measured. At 48h, the number of PMNs in cows of group 1 (53.8 ± 30) was significantly higher compared to groups 2, 3, 4, 5, and 6 with 12.6 ± 16, 16 ± 25, 0.3 ± 0.6, 15.9 ± 9, and 10.1 ± 8 PMNs respectively (P < 0.05). The results of the bacterial culture were negative and no changes were observed on U/S during the study (P>0.05). In conclusion, propomiel triggered a prompt and short innate immune response of the uterus and could be potentially advantageous in cases of PP uterine infection.
Cancer is a disease that can be seen at any age, and 2% of all cancers are childhood cancers in which multidisciplinary treatment consisting of chemotherapy, radiotherapy and surgery is applied. In chemotherapy, the target is cancerous cells, yet high doses of chemotherapeutic agents do not have selectivity. Intact tissue cells are also affected by this cytotoxicity and causes mucositis development in the patient, especially as a result of the mucosal cells being affected. Mucositis is a condition that is expected to begin on the third to fourth day following the start of high-dose chemotherapy, and to peak in terms of severity and depth between seventh and fourteenth days, and heals after 21 days. Treatment of more than one third of patients are mire down due to oral mucositis. Furthermore, this condition cause increase of hospitalization time and mortality. In this study, it was aimed to determine whether oral care with Anatolian Propolis, which is anti-infectious, antibacterial, antifungal, antioxidant, antiviral and antitumorogenic and has an immune-enhancing effect, prevents the formation of oral mucositis due to multiple use of chemotherapeutic drugs. Patients. The sample of the study was volunteered, non-smoker, at age of 2 to 18 years patients who undergo chemotherapy treatment for lymphoma (leukemia, lymphoma) or other childhood solid tumor such as central nervous system tumor, neuroblastoma, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma, hepatoblastoma and germ cell tumors. The study was planned as a randomized controlled experiment in which there were three groups with 36 patients. The groups were categorized as patients who brush teeth with soft toothbrush, who use oral care solution with 20 drops of propolis extraction solvent and who use oral care solution with 20 drops of propolis produced by BEEO-UP at concentration of 15%, three times a day. In conclusion, it was determined that oral care solution including 15% water-soluble propolis was significantly effective on the prevention of mucositis.

OP-048 [Apitherapy]

The potential of Madu Kelulut (Heterotrigona Itama sp Honey) as a Functional Food for Dopamine Booster and Depression Prevention

Mohd Zulkifli Mustafaz1, Anish Ameerah Shahreraz, Shazana Hilda Shamsuddiniz, Wan Amir Nizam Wan Ahmadz, Jafri Malin Abdulb, Nuin Izryan Ramiez1

1Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
2Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
3Bee Medicine Science Programme, School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
4Brainey Sdn Bhd, No 17, Jalan PPT/4, Alam Perdana Industrial Park, Taman Perdana Perdana, 47300 Puchong, Selangor, Malaysia

Depression is a mental disorder characterized by at least two weeks of persistent low mood and loss of pleasure in normally enjoyable activities. Trauma and stressful life events are risk factors for the development of depression. Depression and dopamine levels are reduced in the brain as a result of chronic stress. Stress hormones, norepinephrine and cortisol, are released during stress and these hormones can affect the dopamine system. The dopamine system plays an important role in the reward system and in the regulation of mood and behavior. Dopamine is a neurotransmitter that plays a role in the reward system, motivation, and movement. Dopamine levels are reduced in the brain in depression, which may contribute to the symptom of reduced pleasure or anhedonia.

METHOD: In present study, adult swiss albino mice (N = 23) were given a CRS for 28 days and randomly assigned into 3 groups: control group without intervention, group (G2) with MK (G3) groups. The MK at 2000mg/kg was given daily to G3 from the first day of stress induction. The effects of the treatment were assessed on serotonin, dopamine and corticosterone level in the blood serum via ELISA method.

RESULTS: It was demonstrated that the blood serum serotonin and dopamine levels in the MK-treated groups were significantly increased (P<0.05), whilst corticosterone level was significantly low in the MK-treated mice as compared to the untreated mice.

DISCUSSION: Findings revealed that MK possibly modulates antidepressant-like effects and potentially through the monoamine regulatory pathways. All effects observed were comparable to paroxetine. Paroxetine is an antidepressant selective serotonin reuptake inhibitor (SSRI) used as a positive control for pharmacological validation in this study.

CONCLUSION: Findings suggest that MK can be an effective functional food for depression prevention via dopamine and serotonin enhancement. The honey also merit for further evaluation as treatment for depression disease.

OP-049 [Beekeeping Technology and Quality]

Antibacterial activity – new honey qualitative standard reflecting biological properties

Jura Mataji, Marcella Bucekova, Jana Godockova, Veronika Bugarova

Laboratory of Apidology and Apitherapy, Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia

Honey is a functional food with health-beneficial properties and its potent antibacterial and antifungal effects are the major attributes of so called 'medical-grade honey' which is typically used for the treatment of burns, wounds and skin disorders. Whether ingested orally or applied topically honey must fulfill the requirements of international standards based on physicochemical characteristics. Nevertheless, the current set of honey quality parameters adopted in the European Union do not include its biological properties. Furthermore, in light of the accelerated growth of scientific evidence, there is an urgent need to revise current qualitative tools, and to establish and certify more effective honey quality control. The aim of the study was to evaluate the antibacterial activity of 36 commercial honey samples purchased from supermarkets and local shops with healthy food and compare the efficacy to 3 honey samples from local beekeepers and 3 types of medical-grade honey. Furthermore, hydrogen peroxide (H₂O₂) content and the protein profile were assessed in all honey samples. Analysis of antibacterial activity of commercial honeys revealed that 44% of tested samples exhibited the low antibacterial activity, identical to activity of artificial honey (sugars only). There was a significant correlation between antibacterial activity and H₂O₂ content of honey samples. Honey samples from local beekeepers showed superior antibacterial activity in compare to medical-grade honeys. Antibacterial activity can vary from honey to honey but must not be identical to the activity of the honey sugar content. In most cases activity can be negatively impacted by thermal processing and long-term storage and is therefore a suitable and sensitive qualitative parameter. From a clinical point of view, we strongly advocate to solely use natural honey with minimal processing in order to preserve the full spectrum of biological activities.
OP-050 [Beekeeping Technology and Quality]

Monitoring of some quality parameters of Bingöl honey at different temperatures and in different storage containers for 12 months

İnanc Dursun1, Ece Atubaz Şahin2, Nevzat Çağlayan2, İbrahim Şahin4, Yeşim Aydın Dursun2, Derya Özdemir Polat5, Ramazan Soılmaz4, Gülfeza Kardak6

1Kurum 1: Bingöl University, Central Laboratory Application and Research Center, Bingöl, Turkey; Kurum 2: Bingöl University, Vocational School of Food, Agriculture and Livestock, Crop and Animal Production, Beekeeping Program, Bingöl, Turkey; Bingöl University, Vocational School of Agriculture and Livestock, Crop and Animal Production, Beekeeping Program, Bingöl, Turkey; Bingöl University, Faculty of Arts and Sciences, Department of Chemistry, Bingöl, Turkey; Bingöl University, Central Laboratory Application and Research Center, Bingöl, Turkey; Bingöl University, Faculty of Health Sciences, Occupational Health and Safety Department, Bingöl, Turkey; 5Cukurova University, Science and Letters Faculty, Chemistry Department, Adana, Turkey

Honey has been used as a food for many years. However, it is widely used as an additive in various pharmaceutical and cosmetic industries and in the food industry. Honey is known as a source of healing in the formation of these usage areas and being the subject of many researches. Due to the high nutritional value of honey, it is in high demand by consumers. In addition, the natural production and consumption of honey, which is consumed for different purposes by many age groups for health, necessitates the storage of honey without major changes in quality parameters. Therefore, the type of container in which honey is stored and the storage temperature also play an important role. In the study, the effects of honey at 4 °C and 18 °C on different storage containers (glass, plastic, and metal) and in terms of humidity, Hydroxymethylfurfural (HMF), diastase, and free acidity were investigated for 3 months and 12 months. Polyfloral honey was obtained directly from the beekeeper in the Bingöl region. All analyses were repeated three times. Moisture analysis was carried out according to TS 13936/G, from 2.24±0.07 mg/kg to 12.23±0.55 mg/kg at 4 °C and from 19.8±10.16 mg/kg to 16.66 mg/kg at 18 °C; Diastase Number analysis was performed according to the ICH Phadebas Method, from 23.10±0.41 to 26.85±4.07 to 26.85±4.07 at 4 °C and 18 °C; Free acidity analysis was carried out according to TS 13936/G, from 21.02±0.01 meq/kg to 35.10±0.48 meq/kg at 4 °C and from 21.0±0.50 to 36.94±0.19 meq/kg at 18 °C was found to have been changed.

Acknowledgments: This study was supported by YÖK and T.C. Within the scope of the Regional Development-Oriented Mission Differentiation and Specialization Program (2017K214000), which is carried out under the coordination of the Strategy and Budget Presidency, it is supported by the Bingöl University BUAPB with the project number PAKOM-An.2019-0002.

OP-051 [Beekeeping Technology and Quality]

Single Pot In-Situ Aqueous Derivatization and Subsequent Determination of Streptomycin and Dihydrostreptomycin Residues in Honey by Means of Mass Spectrometry

Sever Acar1, İsmail Emir Akyıldız, Özge Uzunöner, Sinem Raday, Emel Damarlı Ataşarmak Food Co. R&D Center 34782, Istanbul, Turkey

In beekeeping, there is a struggle against many pests, mites, and important insect-borne diseases. The beekeepers apply different techniques to protect their hives from these diseases and the usage of antibiotics is quite common among them. Using these methods, antibiotic cause residues in foodstuff and the insensible consumption of them through the food chain can affect human health negatively. Aminoglycosides (AMGs) are one of the most popular antimicrobial therapeutics used in beekeeping. In most cases, streptomycin (STR) and dihydrostreptomycin (DSTR) are the typically encountered residues in bee products. According to the legislation, there must not exist any antibiotic residues in bee products. This aspect has demonstrated the necessity of highly sensitive and specific quantitative monitoring methods for any authorized laboratories. There are various studies in the literature regarding the analysis of AMGs. However, these methods mostly involve impractical and low yield pretreatments such as ion-pairing agent-assisted extractions and SPE clean-up. The separation and quantification had been performed by capillary electrophoresis and liquid chromatography techniques equipped with UV, FL, or MS detectors. Easily ready-to-use ELISA kits are also in use. Unfortunately, the pretreatment processes of these methods are tedious and time-consuming. In this study, one-pot, aqueous in-situ derivatization was conducted as a novel and superior sample preparation approach. By using UHPLC-MS/MS system, a time and cost-efficient, versatile analysis method has been developed with high sensitivity, and more feasible sample preparation processes were introduced. The developed method accomplished simultaneous quantification of STR and DSTR in 5 min with unprecedented ease of use. The mean recovery values were 102.65% for STR and 101.26 % for DSTR. In the precision study, RSD% values were calculated between 2.5% and 9.2% at intra-day and inter-day variations. CC (5.69 µg/kg and 5.82 µg/kg) and CC (6.18 µg/kg and 6.40 µg/kg) values were found for STR and DSTR respectively. 500 honey samples were analyzed using a novel and validated method. Occurrence of STR and DSTR residues was highlighted by absolute quantification.

OP-052 [Beekeeping Technology and Quality]

Determination of glyphosate, aminomethylphosphonic acid, glufosinate and its acetyl-metabolites in honey by IC-MS/MS

Kurt Peter Roepke

Department for Residues and Contaminants Testing, Eurofins Food Integrity Control Services GmbH, Ritterhude, Germany

The food industry shows a growing awareness of the importance of a healthy and balanced diet such as honey, one of the most natural foods that consumers can buy. Unfortunately, honey quality is not only determined by good beekeeping practice, it reflects the influence of our environment also. Due to the worldwide use of glyphosate honey can carry traces of glyphosate when bees collect nectar. To maintain quality and safety standards, the EU has set the maximum residue level for glyphosate at 0.05 mg/kg. An EU-wide ban of glyphosate is under discussion and a final recommendation from EFSA is expected in the second half of 2022.

As a consequence new analytical methods are required to offer reliable, accurate and rapid quantification of glyphosate, aminomethylphosphonic acid, glufosinate and its acetyl-metabolites in honey combined with high sensitivity and selectivity. Due to increasing concerns over the sensitivity and robustness of LC-MS/MS methods in quantifying traces of polar pesticides, the decision was taken to switch to a more analytically sensitive and better-suited method - ion chromatography (IC) coupled with tandem MS (IC-MS/MS). Moreover, the IC method doesn’t require derivatization, making the sample preparatory steps simpler and shorter. This means sample preparation is straightforward and quick. The ‘dilute and shoot’ method used involves two simple steps: diluting honey samples with the extraction solvent followed by 5-minute centrifugation. Due to the inherent robustness of the IC column, it can handle over 1000 sample in-terceptIon performance loss. The validation protocol shows a high linear concentration range starting at a limit of quantification of 0.002mg/kg glyphosate in honey up to concentrations of 1mg/kg.

The benefits of implementing IC-MS/MS for honey analysis: Improved analyte separation and sensitivity, processing time reduced by a factor of 4, app.50% cost savings vs. LC-MS/MS.

OP-053 [Beekeeping Technology and Quality]

Effect of Heat Treatment on Invertase, Diastase, and HMF (Hydroxymethylfurfural) in Honey Harvested in Turkey

Adı Elif Taşyanur Şahin1, Özgül Üçurum3, Nagihan Uğur2, Azad Akbaş2, Serhat Koçer2, Ömer Şerif Aydin2, Eliy Yorulmaz Önder2

1Beeb/You / Bee’e Research Center, SBS Bilimsel Böcek Cozemler, Istanbul, Turkey
2Central Research Institute for Food and Feed Control, Bursa, Turkey

Turkey, the second biggest beekeeping country in the world, has regulations regarding to prohibit any addition or removal of a substance to honey which can affect its natural composition. Heat treatment is also prohibited since it has the ability of inactivating natural enzymes, particularly diastase and invertase which are indicators of freshness of honey and cause to increase of HMF (Hydroxymethylfurfural) amount. With this study, status of enzymes and HMF amounts and their variabilities in different temperature applications on nine different species were determined. The species were: Pine, Oak, Citrus, Sunflower, Cotton, Lavender, Chestnut, and Wildflower honey samples will be determined for the first time. Outcomes of the study includes modification of heat resistance of invertase and diastase enzyme and the fact that diastase number is insufficient to decide whether honey is heat treated or not without considering the invertase amount. Although citrus honey had the lowest invertase enzyme content at the beginning of the study, Pine and Chestnut honey were the honey varieties that showed the most resistance to heat treatment. While in general, invertase activity and diastase number of honey samples decreased, HMF amount increased. In particular, the amount of HMF rose less, whereas the invertase activity reduced rapidly. Compared to initial value at room temperature, invertase activity decreased 84.9% to 51.22 U/kg, diastase number decreased by 1-3-fold from 13.94 while HMF amount increased 1-4-fold to 22.86 mg/kg at 78°C, for all mean of all monofloral and multifloral honey in total 364 honey samples.
Advances in ISO standardization of bee pollen

1Instituto Politécnico de Castelo Branco, Castelo Branco, Portugal
2Balparmak R&D Center, Alparslan Food Co., Çekmeköy, İstanbul, Turkey
3Hacettepe University, Bee and Bee Products Application and Research Center (HARUM), Beytepe, Ankara, Turkey
4CCC - Chemistry Centre of Coimbra, Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
5University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Romania
6Laboratório Apícola (LabApis), Departamento de Zootecnia, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
7Association with CasaBIO, Cluj-Napoca, Romania
8CARI, Louvain-la-Neuve, Belgium
9Zhejiang Provincial Key Laboratory of Bionanotechnology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
10Swedish Beekeepers’ Association, Skövde, Sweden
11Food and Agriculture Division, Uganda National Bureau of Standards, Uganda
12Apre-Zentrum e.V., Castrop-Rauxel, Germany
13Laboratorio de Productos de la colmena, CIAPA-IRIAF, Spain
14Bee&You/Bee'o Research Center, SBS Bilimsel Bio Çözümler A.Ş., İstanbul, Turkey
15Ankara University, Food Engineering Department, Ankara, Turkey
16Punjab Agricultural University, India

Standardization, although voluntary in many countries around the world, is extremely important for regulating the marketing of goods and services. The standardization of a product guarantees quality parameters not only in the production processes but also in the finished product, thus giving greater confidence to consumers.

Among the various hive products, bee pollen is an important source of macronutrients and micronutrients for bees. Its chemical composition makes it good for food or food ingredient due to the balanced percentages of proteins, lipids, and free sugars, and it also contains minerals, phenolic acids, flavonoids, and a variety of vitamins. As far as minerals are concerned, some are fundamental in metabolic mechanisms, so pollen consumption can be valuable food for humans.

All this implies the urgent need to strengthen bee pollen market with a product that is subject to rigorous quality control. The development of ISO Standards, currently in the final stages of elaboration, will certainly be a crucial tool for achieving this goal.

The technical subcommittee for apiculture products, ISO/TC 34/SC 19, was created in 2017 to improve and ensure the quality of these products, where quality, methodologies of analysis, storage, and transport standards are included. The present work summarizes the standardization work carried out, focusing on the “ISO/TC 34/SC 19 - Working Group (WG3): Bee pollen” and its importance in standardizing the requirements of quality parameters in the world market.

Within the scope of the work developed in WG3, six samples of bee pollen were subjected to different conservation processes (oven-dried, lyophilized and frozen) from six countries (France, Romania, Brazil, China, Turkey, Portugal), and the interlaboratory test was carried out with the participation of 19 independent international laboratories from 10 countries (China, Germany, Turkey, Portugal, France, Belgium, Romania, Brazil, Italy, and Spain) in 2021.

The results achieved so far allow the definition of standardized analytical methodologies for bee pollen and the establishment of limits for the most critical parameters, as well as rules for traceability and origin of the product: labeling, storage, and transport. It is expected that the ISO Standard should be validated by the end of 2022.

A recommendation for chemical standardization of propolis and propolis-based products

Hasan Hüseyin Oruç1, Meltem Çay2, Ali Soroju2
1Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
2Institute of Health Science, Bursa Uludag University, Bursa, Turkey

Propolis is intensively used in the medicine, cosmetics and food industries due to their healing properties such as antibacterial, antiviral, anti-inflammatory, antitumoral, antioxidant, immunomodulatory, tissue regeneration, and anti-ulcer. The functional properties of propolis are dependent on its chemical constituents especially the high content of phenolic compounds (flavonoids and phenolic acids). Propolis and propolis-based products need chemical standardization that guarantees their quality, safety, and efficacy. Although some efforts are still given for chemical standardization of propolis, but there are no accepted and reliable criteria so far. In this context, the identification and quantitative determination of some individual phenolic compounds that have beneficial effects and are widely found in propolis might be useful for the determination of the quality of propolis and propolis-based products. For such reasons, the aim of this work was to evaluate and suggest quantitative determination of nine individual phenolic compounds which are widely detected in propolis in different countries for chemical standardization. 14 literatures for balsam/dried ethanolic/methanolic propolis extract, eight literatures for crude/taw propolis, and two literatures for ethanol-based and water-soluble commercial propolis products were evaluated for this research. The evaluated propolis results were from Turkey, Greece, Italy, Serbia, Croatia, Macedonia, Poland, Ukraine, Azerbaijan, Egypt, Algeria, Argentina, Brazil, China, and South Korea. Nine phenolic compounds were caffeic acid, naringenin, apigenin, kaempferol, chrysin, pinocembrin, galangin, caffeic acid phenylethyl ester (CAPE), and p-coumaric acid. This proposal might be useful for the chemical standardization of propolis and propolis-based products that can guarantee their quality, safety and efficacy.

Effect of different parameters on the antioxidant capacity of propolis extracted by ultrasound-assisted extraction (UAE)

Ezgi Güngör, Neslihan Çakıcı, Halil Oruç
Ankara Araptma Enstitüsü Mudişvariği (Apiculture Research Institute)

Propolis is an important beekeeping product obtained by honey bees (Apis mellifera) by collecting the resin-like secretions of trees and plants and mixing them with their secretions. Propolis is used by bees for different purposes (such as cleaning, repair) in the hive. It has been also used by people throughout history due to its antioxidant, antimicrobial and immune system strengthening effects.

The structure and composition of propolis may vary depending on the plant source, climatic conditions, bee race and the needs of the colony. Generally, flavonoids, aliphatic and aromatic acids and terpenes are effective in the bioactive properties of propolis. However, since propolis has a resinsous structure, these substances must be extracted and separated from the propolis. The classical maceration technique has been widely used for the extraction of propolis. Recently, different applications such as ultrasound-assisted extraction (UAE), microwave-assisted extraction and supercritical carbon dioxide extraction have been carried out to shorten the time, increase the amount of yield and reduce the use of solvents. In addition, each application has an effect on the content of the extract obtained.

The aim of this study is to compare the antioxidant capacities of propolis extracts subjected to different parameters and to determine the most suitable conditions. For this purpose, propolis samples were extracted by ultrasound-assisted extraction at different temperature, period, solvent concentration and propolis-solvent ratio. Total phenolic, DPPH and FRAP analyzes of the extracts were performed and their antioxidant capacities were compared.
OP-058 [Beekeeping for Rural Development]

Beekeeping development and potential of bee products in GAP Provinces

Mehmet Açığöz⁠¹, Nusret Mutlu⁠¹, Cebel Kayalı⁠¹, Bünyamin Aslan⁠¹, Sahan Karahan⁠¹, Gonca Özmen Özbakır⁠¹, Rahşan İşın Tunca⁠²⁵

¹Southeastern Anatolia Project Regional Development Administration, Şanlıurfa, Türkiye
²Harran University, Faculty of Agriculture, Department of Animal Science, Şanlıurfa, Türkiye
³Muğla Sıtkı Koçman University, Ula Ali Koçman Vocational School, Muğla, Türkiye

The Southeastern Anatolia region has the potential for both traditional and organic beekeeping with its different climatic and geographical properties. Beekeeping is an important livestock activity in terms of its valuable products, economic and social role in rural development, and contribution of honey bees to nature. GAP Regional Development Administration is a leading institution within the scope of sustainable agricultural techniques, in determining the current socio-economic conditions of rural communities that cannot benefit from irrigation, their relations with the natural and social environment, and new income-source activities that are suitable for their potential. Within the scope of Rural Development Projects, a workshop was organized in order to determine the problems and solution proposals in beekeeping in the region, and an analysis of the current situation was presented. In addition to honey production, information and training activities were carried out for regional beekeepers in the production of other beekeeping products, care-feeding, and disease-pest control. A total of 89 beekeeping projects were supported between 2007-2019, 21 in Adıyaman, 3 in Batman, 9 in Diyarbakır, 2 in Gaziantep, 2 in Kilis, 8 in Mardin, 16 in Siirt, 2 in Şanlıurfa, and 26 in Şırnak. Supported beekeeping projects since 2019 in these nine provinces will be introduced in detail. It is aimed to develop beekeeping activities in the region, diversify beekeeping products, and increase the level of economic income, especially in rural areas. This study, it is aimed to compile and introduce the projects and supports given in nine provinces in order to develop beekeeping activities and diversify beekeeping products by the GAP Regional Development Administration.

OP-059 [Beekeeping for Rural Development]

The purpose of beekeeping in rural development

Janet Lowore

Bees for Development

The benefits of beekeeping to support rural livelihoods in developing countries are widely understood. However, the sector is replete with examples of projects which underperform. Too much effort is invested in how to do beekeeping, with a focus on ‘improving’ or ‘modernising’ and questions about the why people are attracted to beekeeping are overlooked. This presentation draws on practical experiences and secondary literature about beekeeping projects, mainly in Africa.

One of the problems facing the sector is that too much attention is focussed on the bee, in the mistaken belief that a bee that theoretically affords advantages in colony management, can in practice deliver benefits. Meanwhile insufficient attention is paid to the needs of poor people.

This presentation will take a different look at beekeeping – asking not how to do beekeeping but why? Analysis of what attracts beekeepers to the activity reveals that one of the most motivating factors is the ability to derive an income, essentially ‘for free’, through careful utilisation of nature – bees, flowers and hive-making materials. Beekeeping is accessible to people rich in nature and poor in financial resources. Beekeeping technologies which alter this dynamic and make beekeeping more expensive, more time-consuming and more risky, do not fit with people’s livelihood constraints.

Too often development workers carry out a study of existing beekeeping methods and find them sub-optimum according to pre-conceived notions of what constitutes good beekeeping. Many such studies lament the use of fixed comb hives, without measuring the labour and cost investments in relation to outputs. The cheapness of fixed comb hives is one of the main reasons why people make a profit. Changing the type of beekeeping to make it more capital intensive undermines these attributes. All development projects which aim to reduce poverty must look at the economics of beekeeping from the point of view of farmers. It is essential to remain mindful that many people opt for beekeeping because they can make money, without investing cash. Any departure away from this logic runs the risk of making beekeeping unfit to serve the needs of the poor.

OP-060 [Beekeeping for Rural Development]

Beekeeping as a source of income for rural women in Issyk-Kul region, the Kyrgyz Republic

Dilbara Ismailova Muratova

Issyk-Kul regional branch of the Kyrgyz Union of Beekeepers, Karakol, Kyrgyzstan

At this time, inhabitants in rural areas of the Issyk-Kul region, especially women, have no opportunity to earn a livelihood. The natural and climatic conditions of the target regions of the project contributes to the successful development of beekeeping, with the help of which the tasks of increasing the income of families and increasing the yield of plants by bees pollination would be solved. However, in Kyrgyzstan there are no special training courses on beekeeping, there is practically no beekeeping literature in the Kyrgyz language. Therefore, our project allowed women to undergo training at the beekeeper and get a loan for bee colonies, advisory support.

Our project allowed women to increase family income, improve their social status in the community and the standard of living.

"Women-beekeepers" project exists after the financing, because women continue to receive income from beekeeping. They multiply bee colonies by 100% in this season. Therefore created women-beekeepers Cooperative continues to work and serves thus women get access to resources.
Developing a beekeeping enterprise in select rural areas in the Philippines

Cleofas R. Cervancia1, Anna P. Locsin2, Jessica B. Baraga Barbecho3, Jose Rene L. Micor4
1Institute of Biological Science, College of Arts and Sciences, University of the Philippines Los Baños, College, Laguna 4031 Philippines
2Arrudra Regional Commission for Asia
3University of the Philippines Los Baños Foundation, Inc.; Project Bee Inspired, Corporation
4Bee Program, Office of the Vice Chancellor for Research and Extension, University of the Philippines Los Baños, College, Laguna 4031 Philippines

Beekeeping as a community-based enterprise was established in two provinces in the Philippines, namely Mindoro in Luzon Island and Lanao del Norte in Mindanao. Mindoro and Lanao del Norte are represented by an indigenous tribe, Mangyan and Muslim community, respectively. Their economy is predominantly based on traditional agriculture. The bottom-up approach in extension was applied in this model. Stingless bee Tetragonula bini was used in this project because of its sustainability. Being native to the country, the species is relatively resistant to pests and diseases, easy to propagate and good pollinators of local plants. The training strategies contributed to the success of the project. Site validation in the three communities were done prior to the setting up of the meliponary. The major criteria were the abundance of bee forage and accessibility. Initial training was conducted when the bee colonies were brought to the sites. The series of training engagements were done quarterly in a span of two years, until the participants acquired the skills in the management of stingless bees for pollination production of honey, pollen and propolis and processing of value added products. The community started generating income from the sale of bee products. A model for a sustainable beekeeping enterprise will be presented.

Bringing Back Bees & Beeks: Re-Initiating Apis cerana bee keeping with young beekeepers of Kerala (India)

Jose Louies1, Loretta Andrade2
1indianbees.org
2Tropical Institute of Ecological Sciences - Kottayam Kerala

Beekeeping in the state of Kerala was declining as it was not a profitable business for many professional beekeepers. Due to the changing farming practices and plantation activities, the natural bee population also declining and there was a need to start small scale beekeeping involving youngsters and native bee species. We needed to conserve the native bee species and ensure that the tradition of beekeeping is kept alive in the community. A collaborative project initiated between Tropical Institute of Ecological Sciences and Indianbees.org ‘Bees 4 Life’ is bringing back beekeepers into the profession. Under this initiative, we train and support new beekeepers including school students to become good beekeepers. The aim is to promote the conservation of Apis cerana - which is the native species of bees and sustainable honey production.

Under the project, we have developed nursery colonies of Apis cerana bees and started training potential beekeepers which has become a sustainable initiative with people from multiple background joining as ‘beeks’. New beekeepers and they are provide them with nucleus colonies, monitor the bee keeping activity, train them to collect and market honey in the local market and work together as a larger team.

The bees we use for beekeeping is the ‘apis cerana’ as it is the native species of bees and the conservation of these bees in the landscape is important for the eco system & farmers of the region.

Young beekeepers are encouraged and we have trained few youngsters who were engaged in beekeeping during the COVID lockdowns and few of them are now expert beekeepers who train other beekeepers, sell honey using e-commerce platforms.

We are also promoting the use of stingless bees which produce one of the finest honey which is much sought after by people for medicinal purposes.

Evaluation of the effect of Anatolian propolis on Covid-19 in healthcare professionals

Özlem Bilir1, Enes Güler2, Abdullah Osman Koçak2, Ismail Atas1
1RTÜ University Training and Research Hospital, Emergency Medicine Department, Rize, Turkey
2Ataturk University Faculty of Medicine, Emergency Medicine Department, Erzurum, Turkey

No prophylactic treatment is available for individuals at high risk of developing COVID-19. This study, which was conducted between December 25, 2020 and January 25, 2021, is one of the first clinical studies to evaluate the efficacy of Anatolian propolis supplement against COVID-19. The aim was to obtain evidence on the prophylactic use of Anatolian propolis in individuals at high risk of developing COVID-19. This volunteer-based study was conducted in two centers. Study involved 209 healthcare professionals (physicians, nurses, medical secretaries) from Emergency Medicine Department of Medical Faculty of Ataturk University and Emergency Medicine Department of Rize Recep Tayyip Erdogan University. 204 participants meeting the study criteria were divided into two groups as experimental group and control group. The experimental group received 20 drops of BEE’O UP (BEE&YOU) 30% Propolis Drops twice a day during a follow-up period of 1 month. The control group received no supplement but was followed up. The participants showing symptoms during the study and all the participants at the end the study were subjected to PCR testing. The evaluation of the results of PCR testing at the end of the study has shown that 34 participants from the control group and only 2 participants from the experimental group, who received Anatolian propolis supplement, were reported as positive cases. It has been found that a statistically significant protection was induced against COVID-19 infection in 98% of the experimental group, who received Anatolian propolis, compared to the control group.

Effect of propolis on the treatment of subclinical mastitis in dairy cows

Neringa Sukneviciene1, Grazvydas Puska1, Jurate Siugzdaitė2, Loretta Kubiliene2, Tautvydas Mazeika1, Jurate Rudejeviene1, Zofa Mikniene1
1Lithuanian University of Health Sciences, Veterinary Academy, Tilzes str. 18, Kaunas, LT-47181, Lithuania
2Lithuanian University of Health Sciences, Medicine Academy, Sukileliu str. 13, Kaunas, LT-50166, Lithuania

Antimicrobial resistance is the main problem of today’s health in human and veterinary medicine. Mastitis is a mostly bacteria caused disease of high-yielding cattle, which is usually treated with broad spectrum antibiotics. One of the possible ways to improve the situation of antibiotic resistance is the finding alternative materials for animal treatment against bacterial health disorders. One of considerable substances like that can be propolis. Due to its antibacterial, antifungal, antiviral, antiparasitic, anti-inflammatory, antiproliferative and antioxidant properties propolis can be applied. A clinical experiment was conducted to evaluate the efficacy of propolis in the treatment of subclinical mastitis in dairy cows. Ten, first lactation cows Lithuanian black and white not treated for mastitis or other diseases before and monitored under the herd surveillance program with diagnosis of subclinical mastitis were selected for the investigation. Five and ten % aqueous propolis emulsions were prepared. The cows were divided into two groups: 5 % propolis emulsion was used for the therapy of the first group and 10 % propolis emulsion – of the second. Five ml of propolis emulsion was applied to the udder quarters of cows affected by subclinical mastitis 5 days in a row 2 times a day after each milking. The samples of the milk (for bacteria count) and blood (for blood cells analysis) were collected and analyzed before and after treatment. The results of the study revealed that 5 % propolis emulsion reduced the number of bacteria isolated from cows’ milk by 2.27 log CFU/ml (P<0.05). Meanwhile, the efficiency of 10 % propolis emulsion in reducing the number of bacteria was 0.89 log CFU/ml (P=0.05). The doubling of the eosinophil count in the blood of cows treated with 10 % propolis was also observed and due to that it can be suspected that 10 % propolis emulsion is sometimes able to cause hyperallergic reactions for cows. The results of the experiment revealed that 5 % propolis emulsion can be more effective in the treatment of subclinical mastitis in dairy cows and can be used as an alternative to antibiotics.
OP-066 [Apitherapy]

Brown poplar propolis titrated in polyphenol and Covid-19 in real life: What interests?
Claude Nonotte Varty, Nicolas Cardinaut, Becker Anne
FRENCH SPEAKING SOCIETY OF APITHERAPY

AIM: We report and discuss the interest of a supplementation with brown poplar propolis titrated in polyphenol during the pandemic Covid-19 through a retrospective field observation of elderly individuals living in a seniors residence.

METHOD: 24 elderly individuals have supplemented their diet served in the residence with brown poplar propolis containing 400 milligrams of polyphenol taken twice a day over four consecutive weeks in April 2020 (propolis group PG). 35 other people from the same residence shared the same meals without supplementation (control group CG). PG and CG have been compared in terms of Covid-19 disease risk, lethal risk, clinical forms and beard cells counts.

RESULT: Propolis does not reduce Covid-19 disease risk (38 % PG vs 43 % CG - diagnostics based on PCR tests) and the lethal risk (8 % PG vs 9 % CG) but overall seems to favor asymptomatic clinical forms or the absence of Covid-19 contamination (71 % PG vs 43 % PG, p < 0.05 - or = 3.04 - non parametric T test). Propolis decreases the lymphopenia linked to Covid-19 and boosts the normalisation of lymphocyte counts.

DISCUSSION: Propolis appears to decrease Covid-19-induced inflammation and also boost the immune system in real life. Polyphenols appear to play an essential role in the immuno-modulation and the anti-inflammatory and the anti-viral actions of propolis.

CONCLUSION: This reinforces the interest of a propolis characterized on the botanical level and titrated in polyphenol for an effective action.

OP-067 [Apitherapy]

From the hive to the office. Uses if propolis in dentistry
Rafael Ernesto Felitti
Private practice: Montevideo. Uruguay

The use of bee hive products for human health is very old. For dentistry the first humans use it to calm pan tooth and to filling gaps and to seal carious lesions. Propolis can we use for treat different dental pathologies.

In dentistry we use 5% Uruguayan stabilized propolis alcoholic solution for different uses and treatments, the stabilized propolis is very important because we need the same quality of product along the year.

We can use for root canal treatment, for irrigating the root canal and for intraosseus medicament, in periodontal treatment we can use for coadjuvant irrigation in mechanical treatment and periodontitis treatment, deep carious lesions can be used to stimulate the steam cells of the pulp and generate dentin and other tissue like candidiasis treatment because propolis is an antimicrobial product. Uruguayan propolis have a hi antibacterial activity and antiinflammatory activity because the content of pinocembrin and cafeic acid.

OP-068 [Apitherapy]

The use of honey and propolis against xenobiotics -Induced Oxidative Stress and Hepato-renal Damages: a potential approach that warrants a clinical exploration
Badaa Lyoussi
Lyoussi Badaa, Laboratory SNAMEOPEQ, University Sidi Mohamed ben Abdallah, Fiez, Morocco

Bee products are inexhaustible sources of bioactive molecules. There are extensively used in folk medicine for the prevention of several diseases and has become actually the object of many scientific investigations. Different biological and pharmacological effects of bee products have been referred to their antioxidant, anti-inflammatory agents and renal and hepatic functions. Changes caused by gentamicin administration, observed in vivo experiments, include significant elevation of urea, uric acid, creatinine, and hepatic enzyme levels (ALT, AST, and ALP) and kidney biochemical changes (an increase of urea, uric acid, and creatinine and a decrease of albumin and total protein) as well as remarkable changes of renal and liver oxidative stress markers (CAT, Gpx, and GSH) and elevation of MDA levels.

Overall, it can be concluded that honey and propolis might be useful in the management of liver and renal diseases induced by xenobiotics. The possible mechanism of action is discussed. These results pave the way for controlled clinical studies and the use of their combination might potentiate their activities.

OP-069 [Apitherapy]

Descriptive study of propolis utility for obesity treatment
Andrii Dinets1, Volodymyr Postoenko1, Oleksandr Nykytiuk2, Olesia Lynovytska1, Galina Davidova1, Hanna Postoenko1, Victoria Zdorn2, Mykym Gorobets3
1Prokopovych National Beekeeping Research Institute
2National Academy of Agrarian Sciences of Ukraine
3Taras Shevchenko National University of Kyiv

Background
Obesity is a worldwide problem, associated with increased risk of diabetes type, cardiovascular complications, oncological diseases. Management of obesity is complex, aiming to decrease insulin resistance as well oxidative stress, which are commonly seen in obese people. Administration of propolis could have a positive impact on decreasing of oxidative stress and can be used as additional supplement in complex therapy of obesity management.

Aim of the study was to evaluate role of propolis in complex therapy of obesity management.

Materials and patients. The study was performed in 25 obese patients (BMI > 30 kg/m2), of which 15 patients received treatment with 10 mg of empagliflozin, whereas 10 patients received 10 drops of 20% ethanolic solution of propolis in addition to 10 mg of empagliflozin. All patients were instructed to have low carbon diet and to walk > 5000 steps per day. Follow up was 6 months. Measurement of BMI, serum insulin and glucose were used to calculate index HOMA before and after the treatment.

Results. The study group of patients taking propolis-empagliflozin had mean BMI 35,5 kg/m2 and mean index HOMA 5,5 as compared to BMI 33,3 kg/m2 and mean index HOMA 4,3 at follow up. The control group of patients taking only empagliflozin showed mean BMI at baseline 35,4 kg/m2 and mean index HOMA 5,9 as compared to BMI 34,9 kg/m2 and index HOMA 4,7 at follow up.

Conclusions. This descriptive study demonstrated utility of administration of propolis in complex treatment of obesity. Still, due to small sample size of this preliminary study is not allowed to draw any distinct conclusions, but results from this suggests further investigation of propolis utility as add-on component for obesity treatment.

OP-070 [Apitherapy]

Investigation Of Potential Use Of Propolis Against The Infections Accompanied By Diaper Dermatit (Rash)
Osmancan Tiryakli1, Ask Oktay2
1Department of Biology, Hacettepe University, Ankara, Turkey
2Department of Biology, Hacettepe University, Ankara, Turkey; Bee and Bee Products Application and Research Center, Hacettepe University, Ankara, Turkey

Propolis is a resinous substance that bees create by combining the secretions they collect from trees, leaves and buds with their own enzymes. Due to its antibacterial, antifungal and antifungal properties, propolis has been benefited for centuries in many ways, from embalming the dead, to the content of lip balms. Studies have shown that propolis has a therapeutic effect on wound healing, burn treatment, dermatitis, and many skin problems. In this study, the effect of antibacterial activity of propolis on the prevention of bacterial infections accompanying Diaper dermatitis, one of the most common skin diseases in infants, was investigated. During the experiment, propolis from Tunceli, Hakkâri and Bursa provinces, two bacteria Escherichia coli and Staphylococcus aureus commonly associated with diaper dermatitis, and a yeast Candida albicans

honey, propolis, their capacities for preventing lipid peroxidation and scavenging free radicals was generally correlated with their phytochemical screening. It was also shown that simultaneous treatment with honey or propolis extract alone or in association prevented changes caused by xenobiotics administration and improved hepatic and renal functions. Changes caused by gentamicin administration, observed by in vivo experiments, include significant elevation of urea, uric acid, creatinine, and hepatic enzyme levels (ALT, AST, and ALP) and kidney biochemical changes (an increase of urea, uric acid, and creatinine and a decrease of albumin and total protein) as well as remarkable changes of renal and liver oxidative stress markers (CAT, Gpx, and GSH) and elevation of MDA levels.
were used in clinical strains. iv Ethyl alcohol (99%) was used as an organic solvent for the extraction of propolis samples. In order to determine the antimicrobial activities of propolis samples antibiogram tests were applied on bacteria and fungi samples. In order to test the antimicrobial activity of propolis samples, the MIC values of the antimicrobial activity of propolis samples in samples 100% and 50% extracts were absorbed into the inner midlines of the diapers. Swab samples were taken from the incubated diapers at the 3rd, 6th, 9th, 12th, and 24th hours with the help of a glass baguette, and smear was cultivated on NA for bacterial strains and PDA for yeast. The hourly microbial growth-based antimicrobial inhibition rates of propolis samples were determined by the pour plate technique. As a result of the study, antimicrobial effects were observed at different rates in all three microorganisms. The antimicrobial effect of propolis is found expected to be more effective in cases where the diaper is not changed for a long time. The most efficient method would be to put propolis-absorbed material on the top of the diaper as a separate layer.

**OP-071 [Apitherapy]
An Investigation into the Effects of Ethanolic Propolis Extract on Blood Clotting Parameters**

Sevgi Kolaylı1, Huseyn Sahin2, Hilal Ebru Cakir1, Yakup Kara1, Ozlen Bektas4, Kaan Kaltalioglu2
1Department of Chemistry, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey.
2Epsiy Vocational School, Giresun University, Esipye, Giresun, Turkey.
3Vocational School of Health Sciences, Karadeniz Technical University, Trabzon, Turkey.
4Department of Hematology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.

Because of its high concentration of phenolic capacity, ethanolic propolis extract (EPE) may be used as a dietary supplement. But, a possible interaction between blood clotting parameters between blood-thinning medicines and some natural products having a high content of phenolic compounds has been claimed. To investigate this reality, we designed a preclinical study that included examining some blood coagulation parameters summarized as PT, INR, aPTT, and fibrinogen in rats using warfarin and EPE. The ethics committee of Karadeniz Technical University approved the study with 2019/15 protocol number. The animal experimentation methods were applied to 24 adult New Sprague-Dawley rats divided into 4 groups: Group 1 (G1-Control: 0.9% saline-1.0 mL), Group 2 (G2-Medical control: 0,15 mg/kg, bw, warfarin-1 mL), Group 3 (G3-EPE: 200 mg/kg, bw, EPE-1 mL), and Group 4 (G4-warfarin+EPE: 0.30 mg/kg, bw, warfarin-0.5 mL+400 mg/kg, bw, EPE-0.5 mL). The EPE group (G3) did not influence coagulation markers considerably when administered alone. All blood coagulation parameters except fibrinogen level were found to be greater in the warfarin group (G2) and these differences were statistically validated (p<0.005). Compared to G2 and G4, PT and aPTT levels of G4 reached the control group values even further. Due to the fact that not all parameters in the combination group (G4) increased and some even decreased when compared to G2, it showed that the used dose of EPE was not directly interacting with this drug. It may even be mentioned that it has a synergetic impact due to the fact that it reduces some parameters. Further research using propolis extracts at various concentrations is required to substantiate this claim. The current data published with 10.2375/jprv24112017 DOI number in Progress in Nutrition.

Acknowledgments
The authors are thankful to Dr. Sait Al for his support and to Bee&You (Bee'O®) (SBS Scientific Bio Solutions Inc., Istanbul, Turkey) for providing ethanolic propolis extract.

**OP-072 [Beekeeping Technology and Quality]
Challenges linked to Climate Change and his observe and projected Weather Extremes**

Etienne Bruneau
Apidornia Federation

For several years now, there has been a growing awareness of what climate change can mean for beekeeping operations. The climate seems to be changing more rapidly than previously thought. The temperature increase threshold of 1.5°C has almost reached north of the tropic, with all the consequences that this involves. The increase in temperature is almost constant and is reflected in the effects on beekeeping production, the changes in the seasons modify the biological cycle of our colonies, the availability of floral resources and the development of pathogens. In our daily lives, it is not the 1 or 2°C increase in temperature that will greatly disturb our bees, but rather the increase in the frequency of extreme events (extreme drought, heat peaks, devastating fires, tornadoes, torrential rain, etc.). These events have a direct impact on beekeepers, causing the destruction of colonies and mortality. These events, which make the headlines, can completely destabilise beekeeping activities.

We are beginning to realise today what tomorrow will bring and the challenges we face. Beekeeping is facing one of the most important challenges it has ever faced. This will require beekeepers to adapt if they want to maintain their beekeeping activity and remain sufficiently profitable. Possible measures will be proposed, some of which will be developed during the following presentations.

**OP-073 [Beekeeping Technology and Quality]
How to improve biological resilience to climate change and pathogens?**

Coby Van Dooremalen
Waageningen Research

All organisms are influenced by ever-changing environmental conditions, whether they live in a stable environment with small changes or in a highly fluctuating one. They need to cope with these changes on a day-to-day or seasonal basis within a lifetime or even across generations. The extent to which they can cope with changes and maintain their homeostasis, determines their resilience. Honey bees are superorganisms, and live in habitats with highly variable conditions. They are however extremely well adapted to e.g. changes in resources or temperature. But they too have their limits, as evidenced by high colony losses. To improve their resilience towards the future and optimize their chances in an environment with climatic changes and sometimes high pathogen loads, we first need to better understand what coping mechanisms they have and how stress impacts performance. Hence, I performed several large scale field studies in the last decade, where we exposed colonies to different stressors, such as pathogens, pesticides and extreme temperatures, and measured the impact on these colonies and the performance of their individual worker bees. From better understanding the resilience of colonies under stress within a lifetime, the next step is to gain more insight their potential to increase resilience across generations against the most challenging stressors. In a large field setup, we compared (test) colonies from multiple Dutch populations that supposedly survived >10 years without Varroa destructor treatment, with conventionally kept (control) colonies that were withheld of V. destructor treatment during the experiment. Even though the test colonies had all different origins and were kept and selected in different ways, they were all able to maintain their colony numbers over a period of >1 years, including two winters. In conclusion, honey bee colonies are indeed amazingly resilient organisms within a lifetime, but can increase resilience across generations. As beekeepers and researchers, we may consider trusting this resilience a bit more and leave adaptations to changing environments more up to the colonies, while facilitating them in the most basic sense: availability of resources, water, housing and few beekeeper disturbances.

**OP-079 [Beekeeping for Rural Development]
Natural beekeeping for visitor attractions and public spaces**

Paula Carmel
Paula Carmel Limited

Many organisms are wanting to incorporate a bee aspect into their visitor attraction, and are becoming conscious that natural, kinder methods are of more interest to the public. Using my personal beekeeping experience of treatment free, smoke free and only feeding honey, I have developed a strategy for such organisations to include honeybee colonies in harmony with other pollinators. Key foundations are that no queens or packages of honeybees are introduced to the area. By using wild hives and working with honeybee preferences, local native colonies are attracted in and future colonies derived from these through splits and swarms. By ensuring the health and wellbeing of honeybees, no sugar is fed to them, leaving their honey in sufficient quantities to sustain them through the winter months. Propolis collection and grooming are encouraged and observed. Honey harvests are taken without queen excluders, smoke or stings! Developing alternative income revenue streams to support the investment in honeybee hives and extraction equipment, engages the public whilst educating them regarding the connection between humans and nature. Bee Safaris, honey tastings, and bee experiences inspire and open eyes to the world of honeybees and the important messages they are trying to share with humanity. Referencing the Quran and Buddhist beliefs that the honey bee is the highest level of reincarnation, and that God passed wisdom to the bees to pass onto humans, now is the time to start listening and learning from the bees. Working with The Newt in Somerset, a world class hotel and gardens, colonies now number between 15 and 20 from the original 2 wild colonies found living in the woodlands five years ago. Regular safaris, tastings and the construction of a Beezantium bee museum has put bees centre stage in the United Kingdom, attracting visitors to watch and learn from the bees. My methods are being used with clients across the UK, South Africa and the Lebanon. Working staff within these projects on kinder keeping methods engages an environment with greater understanding of our connections with our pollinators, and if our environment is affecting them, it’s also affecting us.
The cardboard and concrete hives have been part of the setting of our farm for some time. The half-cardboard half-concrete hive of the last time, which we describe in the following lines, augurs a new beekeeping era. The cardboard used is a rectangular parallelepiped in shape with dimensions of 40 x 26.5 x 55 cm3 on the outside, 38.5 x 24.5 x 53 cm3 on the inside when the horizontal flaps are fully upright. Its walls are 0.75 cm thick. Khaki-colored with little paint on the outside, it weighs 600 g. To increase its load and water resistance, it was passed through hot wax in a dry heat water bath. To allow it to adapt to the use of frames, a waxed cardboard wafer of 24.5 x 3.5 x 0.75 cm3 makes it possible to create studs. The frames that can be used have a useful size of 32 x 25.5 cm2. The base and the apex are closed by plywood of 38 x 23.5 x 0.5 cm3, each pierced with a central hole of 0.5 cm of diameter. Optionaly without frames the bees build directly on the inner facade of the plateau from above. It is finally protected by a waterproof roof. Once full, it is placed on its concrete counterpart, made of a rectangular parallelepiped and a slab roof. The first is 49.5 x 47.5 x 32 cm3 outside and 40.5 x 38.5 x 30 cm3 internally. It weighs about 50 kg. The slab has the following dimensions 49.5 x 49.5 x 3.5 cm3. It also has a central hole of about 10 cm. They are all made of unreinforced concrete. This hive can be equipped with frames with the following useful dimensions 36.5 x 25.5 cm2. Under conditions of use without frames, bees also build directly on the inner facade of the slab. Productivity per harvest: without frames: 15 kg of honey + 5 kg of wax. It is inexpensive, a fine example of recycling and garbage recovery. It promote wax within the holding and dispels the aggressiveness of the african bee.

OP-082 [Beekeeping for Rural Development]

Mobile Honey: Open-source traceability for honey and beeswax in Ghana

Giacomo Cirelli1, Isaac Kojo Mbroh2, Kwame Aidoo2, Gideon Hopeon-Zege2

1Bees for Development Ghana
2Bees for Development

Beepkeers in remote and rural areas of tropical Africa can produce high quality, residue-free honey and beeswax. Furthermore, abundant wild populations of honey bees make beekeeping with simple, low-cost technology, including recycled materials, accessible and scalable. However, sourcing and consolidating produce from many small scale beekeepers, in remote areas with limited transport and communication infrastructure, poses complex logistical challenges. One common problem honey and beeswax trading businesses face in these situations is quality control. Extended, capillary supply chains make it very difficult to identify the source of any quality issues and therefore resolve these. Novel product traceability software solutions could help overcome this challenge, yet are priced well beyond economic viability.

We are therefore developing an open-source digital traceability system, with a view to supporting honey and beeswax trade in the Afram Plains of the Eastern Region of Ghana. Beekeeper registration, distribution of containers and records of transactions are managed via our open-source data software suite, which provides a quality control protocol built into the data management system and supported by training and working with a network of honey collection coordinators and harvest support teams. We present the key features of this system and report on its first trial season in April – June 2022. We then reflect on its potential, how it can be adopted by others and how to take its development forward.

OP-083 [Beekeeping for Rural Development]

First detection of Nosema ceranae and black queen cell virus in Ghana

Lucia Zipoli1, Metka Pislak Ocepek1, Ulika Zajic2, Laura Šimenc2, Ivan Toplak2, Kofi Bossman3

1Institute Of Pathology, Wild Animals, Fish And Bees, Veterinary Faculty, University of Ljubljana, Slovenia
2Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Slovenia
3Honey Medex Limited, Labone, Accra, Ghana

As part of a support project for the bee industry in Ghana, a pilot study was conducted on the occurrence, diversity, and geographical distribution of honey bee pathogens, parasites, and pests in Ghana. The samples were stored and transported to Slovenia. The real-time PCR analysis was performed for pathogens: Poenobacillus larvae, Melissococcus plutonius, Nosema apis, Nosema ceranae, Crithidia mellificae and Lotmaria passim; and brood samples were tested for varroa mite infestation. Bees were also tested for acute bee paralysis virus (ABPV), black queen cell virus (BQCV), deformed wing virus (DWV), sacbrood virus (SBV), chronic bee paralysis virus (CBPV) and lake Sina virus (LSV).

All samples were negative for P. larve, M. plutonius, N. apis and C. mellificae, ABPV, DWV, SBV, CBPV and LSV. This is the first time that N. ceranae and BQCV have been detected in Ghana. They were both found in low levels. Although there were no clinical signs of varroa, samples of drone bee were heavily infested with varroa mites.

Honey bee health at the sites we inspected and sampled is currently very good, likely due to the very extensive beekeeping practises in Ghana. Because different management techniques can affect colony exposure to parasites and pathogens, bee health monitoring should always be included when changes in technology are introduced.

OP-084 [Beekeeping for Rural Development]

Report on the effectiveness of control measures in response to an outbreak of severe infestations of Aethina tumida in apiaries across Bono East Region, Ghana

Stephen Adu
Honey Centre, Saltpond, Accra-Cape Coast Road, Ghana

BACKGROUND: Ghana lies in the endemic distribution range of Aethinat tumida, where beekeepers have considered it to be a minor pest that only threatens the survival of weak colonies and that has therefore not usually been subject to any control measures. Starting in March 2022, an increasing number of beekeepers across Bono East Region have been reporting severe infestations of small hive beetle (SHB) in their apiaries, associated with absconding and collapse of even strong colonies in large numbers.

OBJECTIVES: This paper offers a preliminary report on the impact of this outbreak and beekeepers’ responses, with a focus on identifying and divulging effective control measures.

Research Questions: How and when have beekeepers in the region realised the need to control SHB populations in their apiaries? What control measures have beekeepers put in place? How effective have these control measures been in mitigating the impact of the outbreak?

METHODS: The research draws on interviews, interactions and correspondence with beekeepers conducted by Bees for Development staff and Master Beekeepers across Bono East Region of Ghana. Field trials were conducted to compare the effectiveness of mechanical traps (1) located inside and outside beehives, and (2) using different baiting materials.

RESULTS: Data collection and analysis is continuing. Preliminary results indicate limited effectiveness of mechanical traps in controlling severe infestations. Colonies in poorly constructed or deteriorating beehives are prone to higher SHB populations. Beekeepers are now also experimenting with neem oil based insect repellent preparations applied to the outward facing side of top-bars, where the adult SHB population is concentrated in the proximity of strong colonies.

OP-085 [Beekeeping for Rural Development]

Promoting beekeeping and conservation in bioreserve area in Turkey: A success story of Ali Nihat Gökyiğit Foundation (ANG)

İrfan KANDEMİR
Department of Biology, Faculty of Science, Ankara University, Ankara-Turkey

Turkey is on the intersection of three continents and also on the way of two important past path namely Spice and Silk Road thus played a very important role bridging the Asia, Europe and Africa. In this vast geographical area, different topographical and climatological features shaped by the evolution make it favorable for the floral and faunal sources. Over 10,000 plant species create huge floral diversity and this is well reflected into great honeybee biodiversity. A total of five honey bee subspecies and also many ecosystems are found in this geography suitable for modern beekeepers (Ali Nihat Gökyiğit Foundation) carried out long lasting project since late 1990s for the selection, breeding and conservation of Caulusis honeybees in Macahel. After successive beekeeping training, candidate beekeepers learned beekeeping
and queen production in this isolated bioreserve area. This initiative created awareness on beekeeping and promoting beekeeping in the region. The resulting outcomes at first increased the household income and also the number of women and young beekeepers. Secondly, high queen and honey production filled the gas need by the beekeepers all over the country to increase the colony yield. Thirdly attracted the attention of scientific community to work with indigenous bee namely Apis mellifera caucasica. This is followed by the registration of the honeybee subspecies by the Ministry of Agriculture and Forestry. After registration, the area is announced to be the first conservation area in Turkey. The number of conservation areas is still increasing since then. ANG Foundation still continues to support the local beekeepers and also beekeepers of the country by providing good quality queens and also bee colonies. ANG foundation extended successful initiative to another area, Anatoiliaca in Kırkırca-Ankara. This continues support is not only promote beekeeping and conserve honeybees in Macahel bioreserve area but all over Turkey.

PLANNING MIGRATORY BEEKEEPING WITH A GENETIC ALGORITHM BASED APPROACH FOR SUSTAINABLE PRECISION BEEKEEPING

Ahmet Albayrak, Emine Özöeik
Department of Computer Engineering, Faculty of Engineering, Duzce University, Kocaelipalat, 81660, Duzce, Turkey

One of the most important tasks for migratory beekeepers is to determine a suitable settlement for the beehive. There are some points to be considered while determining the place of residence, such as resource diversity of the destination region, whether plants in the region are in bloom or not, meteorological condition of the region, and bee population in the region directs the movements of migratory beekeepers. All these factors affect the income of the migratory beekeeper. The goal of the migratory beekeeper is to gain maximum profit with minimum cost. In this study, a solution was sought for the problem of finding suitable settlements for migratory beekeepers with the help of the traveling salesman problem by using genetic algorithms, which is a meta-heuristic approach. In this direction, by protecting the health of the bees and the maximum profit for migratory beekeepers, the optimization of the location where the migratory beekeeper will go, determining the correct locations according to the point where the migratory beekeeper wants to go, an application has been developed that gives the user the number of colonies to be placed for the best honey production according to the region. The city routes to which the migratory beekeeper should go are determined by following the genetic algorithm. Each route represents one chromosome and chromosomes create the population. Parents selected from the population are subjected to crossover and mutation processes to produce new chromosomes. This research can be considered as the traveling salesman problem. The creation of new chromosomes maintains the best solution. The application has been developed for approximately 5 million colonies and 60 thousand migratory beekeepers in Turkey. With this application, the problem of determining the settlement for the beekeeper, which is one of the biggest problems of the migratory beekeeper, will be eliminated with minimum cost and maximum profit. Thus, the accumulation of bee colonies in certain areas is prevented. It also contributes to sustainable agricultural activities by collecting the nectar in the regions as much as possible.

SUSTAINABLE AGRICULTURE FOR MIGRATORY BEEKEEPERS CONSIDERING URBANIZATION PLANS

Ahmet Albayrak1, Meral Kekeçioglu2, Emine Özöeik1

1Department of Computer Engineering, Duzce University, Düzce, Turkey
2Department of Zoology, Duzce University, Düzce, Turkey

Beekeeping is an important agricultural activity in Turkey as well as all over the world. According to official records, the number of beekeepers in Turkey is around 57,897. These beekeepers have a total of 6.8 million bee colonies. Approximately 75% of bee colonies are exposed to migratory beekeeping, which corresponds to approximately 5.1 million colonies. Bees should be taken to places with suitable climatic conditions during the winter months. In a study conducted in 2021, wintering areas were determined for migratory beekeepers. These areas were determined as the middle Black Sea and Mediterranean regions. However, urbanization and industrialization continue in these regions. If urbanization and industrialization continue uncontrollably and suitable areas are not allocated in the regions designated for bees, winter accommodation areas of migratory beekeepers may disappear. This situation will cause intense loss of bee colonies during the winter months.

In this study, it is aimed to determine the areas where migratory beekeepers can both do beekeeping and meet their shelter needs. As an example of the research performed for the coastal regions in Turkey, environmental and regional factors were analyzed. Environmental factors are temperature, sunshine status, humidity, wind, climate type and precipitation. Regional factors, on the other hand, are proximity to highways, distance to living areas, railways, proximity to high voltage lines, proximity to wetlands, lands suitable for agriculture. All variables were processed according to each region. For this purpose, fuzzy logic approach was used. With fuzzy logic, each variable in the range of 0-1 is represented as a membership function. In the fuzzy logic approach, the output function is the terrain suitability variable. The scale to be considered when selecting suitable areas;
Climate change threatens the conservation of an endangered Brazilian stingless bee species

Vera Lucia Imperatriz Fonseca1, Marina Siqueira Castro2, Andre Luis Acosta3, Airton Torres Carvalho4, Celso Feitosa Martins5, Favizia Freitas Oliveira6, Tereza Cristina Giannini7

INTRODUCTION
Melipona scutellaris is an endemic stingless bee species that inhabits a small area in the Brazilian Northeast whose biome (Atlantic Rainforest) is predominantly hot and humid. Its natural colonies were historically overexploited for honey production by local residents, and consequently, M. scutellaris is included on the Brazilian red list (endangered and locally vulnerable). Therefore, understanding impacts of climate change on its natural habitat may assist future conservation efforts.

OBJECTIVES
The main goal was to assess potential habitat loss under climate change for two periods (2021-2040; 2041-2060), under the CMIP6 SSP5-8.5 scenario. This scenario was chosen, among other things, due to the expected rise in global poverty after COVID pandemic, energy shortage encouraging the burning of fossil fuels, increase in fires, and agricultural intensification.

METHODOLOGY
Occurrence data of the target species were collected from Global Biodiversity Information Facility, SpeciesLink Network, and Brazilian scientific collections. The suitability area was modelled with five algorithms (GLM, GBM, GAM, RF, MAXENT) and five rounds (75% training, 25% tests) using 12 layers of environmental variables selected after the variance inflation factor. Our findings suggest that, five rounds (75% training, 25% tests) using 12 layers of environmental variables selected after the variance inflation factor.

RESULTS
We generated 375 models according to 207 exclusive occurrence points for M. scutellaris. This result is consistent with our hypothesis and demonstrates that energy supply imbalances can prevent worker bees from returning to their hives. We expect that energy production of worker bees can be increased by adding adenosine, and we assume that this method can promote resistance of honey bees and enhance the apiculture industry.

Evaluation under field conditions of the effect of genetic origin, environment, and time of year on the characteristics of collected pollen, produced bee bread and nutritional status of Apis mellifera

Maria Belen Bedascarras1, Analia Noelia Martinez2, Enrique Luciano Bedascarras2, Miguel Maldonado2, Gerardo Pablo Gennari2, Jose Antonio Garcia2, Maria Alejandra Palacio2

The nutritional value and different physicochemical characteristics of the natural pollen and depends on the initial pollen diversity and the microorganisms involved in the transformation. The objective of this work was to determine the influence of different genetic origins of Apis mellifera and two seasons on the characteristics of the collected pollen and bee bread in an area with a temperate climate. Samples were collected before and after wintering in subtropical and temperate climates. Overall, bee bread produced in the subtropical climate had a lower pH than the one produced by European colonies. Protein concentration in bee bread had lower pH and protein concentration than the pollen that originated it, which is consisent with the presence of a fermentative process. In every case bee bread had lower pH and protein concentration than the pollen that originated it, which is consistent with the presence of a fermentative process. The physicochemical characteristics of both pollen and bee bread were significantly different in relation to the season, and for both cases the after-wintering period showed a higher pH and a lower protein concentration than the before-wintering period. Also, the bee bread produced by Africanized colonies had a lower pH than the one produced by European colonies. Protein concentration in bee bread did not vary between colony types, but it was not related to protein content in honey. Therefore, it would be a sufficient indicator of the colony’s nutritional status by itself. This work is a first integrated vision of the process of pollen selection and bee bread production, consumption, and assimilation under field conditions, which needs to be deepened in future works.

Adenosine signaling regulates the wingbeat frequency of Apis mellifera upon stress response

Yu Chun Lin, Yueh Lung Wu

Department of Entomology, National Taiwan University, Taipei, Taiwan

Honey bees have historically been important pollinators, but they are currently facing many threats that are reducing their populations. Previous studies indicate that stress can damage the memory and learning ability of honey bees, eventually leading to declines in foraging and homing abilities. In this study, we try to explain the homing ability barrier from the aspect of energy supply. We believe that when worker bees suffer from stress, their energy supply may shift from movement to resistance, causing an imbalance which fails to provide adequate energy to the flight muscles, leading directly to reduction of wingbeat frequency, thereby impairing the flight ability of worker bees. We treated worker bees with imidacloprid, used a camera to record their wing beats, and then compared differences between treatments. We also measured glucose, glycogen, trehalose, and ATP content. Genes for energy metabolism and resistance were also analyzed. We subsequently added adenosine to test whether it could improve ATP content in worker bees. Preliminary results showed that wingbeat frequency and glucose content in worker bees treated with imidacloprid were significantly lower than the control group. This result is consistent with our hypothesis and demonstrates that energy supply imbalances can prevent worker bees from returning to their hives. We expect that energy production of worker bees can be increased by adding adenosine, and we assume that this method can promote resistance of honey bees and enhance the apiculture industry.

Vitellogenin gene: A powerful genetic marker for the determination of honey bee subspecies

Ayça Özkan Koca1, İrfan Kandemir2

1Department of Food Science and Culinary Arts, Maltepe University, İstanbul, Turkey

2Department of Biology, Ankara University, Ankara, Turkey

The western honey bee, Apis mellifera, is native to Europe, Africa, and Western Asia with a great diversity of subspecies. Subspecies can be classified into four evolutionary lineages, mainly based on morphological characters and genetic markers: the M lineage of Eurasia, the C lineage of Europe, the O lineage of Western Asia, and the A lineage of Africa. Nuclear and mitochondrial molecular markers have been widely used to distinguish honey bee subspecies and reveal the evolutionary process of honey bee subspecies. Discrimination of subspecies by different methods is also important in terms of conservation of honey bee biodiversity. In this study, nuclear vitellogenin gene Vg region encoding protein that affects reproductive function, behavior, immunity, longevity, and social organization in honey bees, was selected to understand the
evolutionary history of honey bee subspecies. To investigate the pattern of genetic variation associated with Vg region of different subspecies and to reveal their evolutionary history, six variable Vg exon regions (Vg2-7 exons) of 18 subspecies were partially sequenced. The obtained sequences were combined with 5 subspecies that are available in the NCBI GenBank Database and the total number of subspecies analyzed reached to 18. Phylogenetic construction based on beast tree resulted in four main groups. Subspecies were consistently clustered into previously recognized lineages. The median-joining network constructed using the haplotype datasets of the nuclear Vg region and yielded similar clustering with some admixture among different lineages. This admixture can be explained by the queen trade among different regions. Despite of having admixture, Vg region could be a valuable genetic marker to reveal phylogenetic relationships among honey bee subspecies.

Salim Aktuý,1 Sameet Okuyan,1 Serhat Solmaz,1 Yeliz Kasko Anç2
1Agriculture Research Institute, Ordu, Turkey
2Faculty of Medicine, Ordu University, Ordu, Turkey

Although bee bread contains higher levels of reduced sugar and digestive enzymes compared to the pollen from which it is produced, due to its high cost, it is not feasible to use it throughout the breeding process. Therefore, in the study, the effects of using bee bread in pre-social phase feeding were emphasized. Fresh pollens obtained from the poppy (Papaver somniferum) and cistus (Cistus spp.) plants are used extensively in bumblebee breeding and can be acquired as monofloral. In this study, fresh pollens of these two plants and the bee bread produced using the same pollens were used to feed the queens. Queens were reared after the diapause period were placed in individuals and fed in a rearing environment with a relative humidity of 50 - 55%, and a temperature of 28 - 30 °C. A total of 90 hibernated queens were completely randomly divided into 6 groups with 15 in each group (1. poppy pollen, 2. cistus pollen, 3. pollen mix, 4. poppy bee bread, 5. cistus bee bread, 6. bee bread mix). In this study, the effects of bee bread on the quality parameters such as egg-laying rate (%), colony initiation time (days), and first worker emergence (days), which are calculated by varying the colony development period and also affect the colony development after the social phase, were investigated. Egg-laying rate (%) was calculated as 47%, 40%, 53%, 47%, 40% and 33% in the groups, respectively. The treatment groups were not significantly different in terms of egg-laying rates of queen bees (% (p=0.914). There was no significant difference between the groups in terms of colony initiation time (days) (p=0.849) and first worker emergence (days) (p=0.290).

A new Acaricidal Compound Against Varroa

Stephe Penn1, Erik Plettner2, Robert Lu3, Olav Rueppl3, Jorge Macías Sámano2, Abdullah Ibrahim1
1Agriculture and Agri-Food Canada, Beaverlodge Research Farm, Beaverlodge, Alberta Canada TOH 0C0
2Simon Fraser University, Department of Chemistry, Burnaby, British Columbia, Canada V5A 1S6
3University of Alberta, Department of Biological Sciences, Edmonton, Alberta, Canada T6G 2E9

Infestation of bee colonies Apis mellifera by varroa mites Varroa destructor is a significant cause of colony loss, particularly during the winter months in Canada. Currently, beekeepers have a limited number of tools available to treat bee colonies for varroasis. These mites have also quickly developed resistance to a number of registered compounds with acaridical activity (i.e. fluvalinate, coumaphos, amitraz), while remaining treatment options often pose health hazards to beekeepers, require special devices for application, or have variable efficacy. As such, alternative control strategies are urgently required, particularly those that involve novel compounds. Based previous laboratory and field testing, we have discovered a new acaridical substance, 1-allyloxy-4-propoxybenzene, referred to as 3c. In 2021 and 2022 we conducted large scale field trials in the southern British Columbia and northern Alberta to evaluate the efficacy of this acaricide under a range of environmental conditions, in comparison to a thymol-based treatment and untreated colonies. In 2019 and 2021, field experiments during fall months showed mite control efficacy levels of up to 81.1 ± 2.9%, using a 4 week treatment period and release devices impregnated with either 4 or 5 of 3c. These studies also showed no measurable negative effects of the active compound on adult bee or brood development. Results will be discussed comparing the efficacy of 3c with variation in amount of active ingredient; applied to colonies, the duration of exposure and the type application device.

Raqel T. de Sousa, Geraldine A. Wright
Department of Zoology, John Krebs Laboratory Field Station, University of Oxford, OX2 8QJ Oxford, United Kingdom

Nutrient detection allows animals to select dietary chemicals required for survival and avoid harmful ones. Besides, animals attain optimal nutrition through the regulation of ingested nutrients. Mineral salts are micronutrients known to be limiting for phytophagous insects. Thus, balancing mineral intake can be challenging. We know that there is a relationship between salt concentration and foods’ phagostimulatory power (palatability). Studies from mammals and insects reveal that high salt is attractive, but high salt deter feeding as it can become toxic. However, it is unknown whether this is the case for honey bees that obtain essential minerals mostly from pollen, which is highly variable in composition. Do all minerals have the same nutritional value? Moreover, what is high and low salt for bees? Here, we used two-choice feeding assays to assess whether young workers preferred mineral-enriched over mineral-free sucrose solutions. All eight prevalent minerals in pollen were tested at four levels of concentration (salts: NaCl, KCl, CaCl2, MgCl2; metals: CuCl2, FeCl2, MnCl2, ZnCl2). Overall, bees perceived and preferred all sodium solutions and avoided ingesting solutions with high levels of metals to prevent intoxication. Only copper and iron solutions revealed feeding responses shaped by concentration. We show preference indexes, consumption responses, and bee survival for all eight minerals. These data indicate that adult honey bees regulate the intake of mineral salt diets and may display homeostatic mechanisms for regulating mineral intakes and attaining better nutrition. This study is the first to show that bees optimise their micronutrient intake and compare this form of behaviour in one organism for eight different micronutrients.

Proteomic studies and its antimicrobial activity of honeybee venom collected from Apis dorsata, Apis cerana, Apis mellifera and Apis florea species of Karnataka, India

Nagesh Krishnaappa1, Bhargava Hunkunda Radhakrishna2
1Research Scholar, Department of Zoology, Jnanabharathi, Bangalore Karnataka, India 560056
2Associate professor, School of Sciences Garden City University Bangalore, Karnataka, India 560049

The word “proteome” represents the complete protein pool of an organism encoded by the genome. Proteomics helps in understanding the alteration in protein expression during different stages of life cycle or under stress condition. It helps in understanding the structure and function of different proteins as well as protein-protein interactions. Bee venom is known to contain many proteins such as major protein melittin, enzymes such as phospholipase, hyaluronidase and other various proteins that has many medicinal values. These proteins vary in the concentration and composition between different bee species and also with respect to season. This can be analyzed with the help of proteomics. Amino acid variation in the proteins can make profound changes in the action of proteins. This is done by Two Dimensional Gel Electrophoresis technique. Proteins are first separated based on their individual charges in 1D. The gel is then turned 90 degrees from its initial position to separate proteins based on the difference in their size. This separation occurs in 2 dimension hence the name 2D. The spots obtained in 2D electrophoresis are excised and further subjected to mass spectrometry for each protein present in the mixture. Once the sequence of the proteins is obtained, it can be used for drug development by screening for suitable targets using online tools. It can also be used for finding out the genetic background of the proteins; the switching mechanism of genes involved which will be helpful in rDNA studies. Antagonistic activity was carried out to study the rate of inhibition against different pathogens.

Development of cream formulations enriched with honeybee venom (Apis mellifera L.) and bee products

Asli Elif Timurkucu Samentoğlu1, Meral Keker gölu2
1SBS Bilmelik Bio Gazmali R&D Center, İstanbul, Turkey
2Department of Biology, Düzce University, Düzce, Turkey

Bee venom is a substance that is produced in the venom glands of worker bees. Bee venom, which the European Commission defines as a firming and skin-protecting component in the cosmetics industry, contains pharmacologically
significant active ingredients. Although bee venom is a commonly used substance in apitherapy, it is challenging to come across bee venom creams. Since there is an increasing demand for natural cosmetics, creams with natural ingredients were produced in this study by making cream formulations. The active ingredient is bee venom. Many studies have shown that bee venom has many effects such as antibacterial, anti-inflammatory, nervous system regulator, pain relief, and antiaging. In this study, face, body, foot, hand, and articulare cream formulations and prototypes with the mentioned effects of bee venom were developed and subjected to various tests, including allergy, dermatological, and cytotoxicity tests. Prototype products have been created for five types of cream, based on the formulations selected from voluntary tests and sensory tests. The prototype creams of the selected formulas were tested for stability at room temperature and 40°C. The creams that were found suitable based on the stability tests were subjected to various tests, including allergy, dermatological, and cytotoxicity tests carried out on volunteers. The data generated on five prototype creams showed the appropriateness of the developed formulations. This study produced prototype creams by developing face, body, foot, hand, and joint pain creams containing bee venom.

OP-101 [Apitherapy]
Immunomodulating Effect of water-soluble propolis extracts of green, red propolis and brown propolis (WEEP-GBR)

Jeon Lee1, Seungwan Lee2, Haedong Kim3, Yeong Choon Yoo4
1Department of Microbiology, College of Medicine, Konkuk University, South Korea
2Department of Animal Science, College of Agriculture, Konkuk University, South Korea
3Department of Food Science and Technology, College of Agriculture, Konkuk University, South Korea
4Department of Biotechnology, College of Agriculture, Konkuk University, South Korea

Cytokines released from innate immune cells play key role in the regulation of the immune response. Propolis is known to show a significant immunomodulating effect. These results suggest that water soluble propolis extract with Brazilian green and red propolis and Australian brown propolis has immunomodulatory effects.

OP-102 [Apitherapy]
Propolis: Sustainability for the Honeybee - Sustainable Medicine for man?

James Townend Fearnley
International Propolis Research Group

Propolis obviously has a major role to play in the honeybees immune defence. Propolis protects the colony physically, reinforcing every cell, creating a defendable entrance as well as an effective and adaptable ventilation system. Biologically, principally prevents infections and pathogens, propolis acts to keep the hive healthy together by disconnecting and disabling bacterial and virus’s, deranging rather than destroying. Propolis provides the honeybee colony with a key capacity or ability to sustain itself. It is the most powerful component of the honeybee’s sustainability. What propolis does for the honeybee, we are discovering, it can also do for human beings. The colony is a body, a superorganism without a skin. The temperature inside this superorganism is very close to that in the human body. Over the last 70 years research has illustrated the many anti - properties of propolis, anti-bacterial, anti-inflammatory, anti-allergic etc. Modern pharmaceutical medicine, however, did not develop the disabling, disconnecting and ultimately sustainable model demonstrated by bees. Propolis research is focused instead on targeted synthetic模仿 single molecule actives often derived from plants and designed to directly destroy the bacteria, fungi, virus. The short-term benefits of this anti – medicines has been dramatically positive, but has in the long term contributed to some major global health care problems - antibiotic resistance and iatrogenesis. The sustainability of modern pharmaceutical medicine is in question. How can this new more sustainable medicine be developed itself sustainably. The honeybee is not a commodity to be exploited. We need a new relationship with what we call medicine and a new relationship with those natural medicines that may well hold a critical key to the restoration of positive health.

OP-103 [Apitherapy]
Simultaneous Optimization of Extraction Yield, Phenolic Compounds and Antioxidant Activity of Moroccan Propolis Extracts: Improvement of Ultrasound-Assisted Technique Using Response Surface Methodology

Bedaa Lyoussi1, Abderrazak Aboulghazi2, Meryem Bakour3, Mouhine Fadi4
1Abderrazak Aboulghazi, 1Department of Biology, Laboratory SNAMOPE, University Sidi Mohamed Ben Abdallah, Fez, Morocco
2Meryem Bakour, 2Department of Biology, Laboratory SNAMOPE, University Sidi Mohamed Ben Abdallah, Fez, Morocco
3Mouhine Fadi, 3Physico-Chemical Laboratory of Inorganic and Organic Materials, Mohrman V University, Rabat, Morocco
4Bedaa Lyoussi, 4Department of Biology, Laboratory SNAMOPE, University Sidi Mohamed Ben Abdallah, Fez, Morocco

Propolis has given rise to refreshing interest in recent years in the field of conventional medicine. Its extraction represents an important process that requires optimal conditions, which strongly affect the yield of extraction, total polyphenols, flavonoid content, and radical scavenging capacity markers. The objective of the present study was to optimize the ultrasound-assisted extraction conditions of Moroccan propolis. The studied responses were the extraction yield, total polyphenols, flavonoid contents (TPC, TFC), and antioxidant activity of the extract evaluated by DPPH-IC50 and FRAP-EC50 assays. The response surface methodology (RSM) and specifically the Box-Behnken design (BBD) were used, taking into account three variables: sonication time (min), solvent/propolis ratio (mL/g), and ethanol concentration (%). After the realization of experiments and data analysis, optimal response values were 15.39%, 192 mg GAE/g of propolis, 45.15 mg GAE/g, 29.8 μg/mL, and 128.3 μmol Fe2+/g for extraction yield, TPC, TFC, DPPH-IC50, and FRAP-EC50, respectively. Based on these results, optimal ultrasound extraction conditions were 15 min for sonication time, 30 mL/g for solvent/propolis ratio, and 40% for ethanol concentration. All obtained experimental values were in good agreement with the predicted values, suggesting that using an experimental design in the ultrasound-assisted extraction process and optimization was prudently chosen.

OP-104 [Apitherapy]
An important product in the development of effective alternative nanocomposites for use in medical and environmental areas: A honey bee silk

Susi Tetesulu1, Doğa Kavaz2, Erkay Özgo3
1Department of Biotechnology, Faculty of Engineering, Cyprus International University, Lefkoşa, Cyprus; Cyprus Bee and Bee Products Research Centre, Cyprus International University, Lefkoşa, Cyprus; Biotechnology Research Centre, Cyprus International University, Lefkoşa, Cyprus
2Department of Biotechnology, Faculty of Engineering, Cyprus International University, Lefkoşa, Cyprus; Biotechnology Research Centre, Cyprus International University, Lefkoşa, Cyprus
3Department of Molecular Biology and Genetics, Faculty of Art and Science, Cyprus International University, Lefkoşa, Cyprus; Cyprus Bee and Bee Products Research Centre, Cyprus International University, Lefkoşa, Cyprus

Global trends are moving towards environmentally friendly materials and production methods for medical usage and the removal of pollutants from the environment. Therefore, natural fibre materials are attracting worldwide attention. Silk, a natural protein fibre, is one of the most critical materials used in the medical and textile fields nowadays. Silk is used medically in tissue engineering as a scaffold, drug delivery systems and implantable devices as a biomaterial application. Silk solutions have been used to form a variety of biomaterials, such as gels, sponges and films for medical applications. Both cocoon silk and spider silk are generally used in these applications, but honey bee silk is a lesser-known silk type. Honey
bee silk is composed of four fibrous proteins that, unlike other silks, are readily synthesized at full-length and high yield. The importance of the four protein complexes found in natural honey bee silk may lie in biological silk storage or hierarchical self-assembly. However, the amino acid composition and molecular architecture of the proteins are similar, suggesting that they may be more functionally efficient than others. Besides, honey bee silk membranes were analysed according to physicochemical surface topography, stability, biodegradation, and mechanical and biological properties. In vitro studies showed that the honey bee silk membranes were found cytocompatible, hemocompatible and acceptable immune response. Considering all these, this study aims to produce honey bee natural silk solutions and includes studying their composite fabrication for biomedical use. For this purpose, a procedure for the production of bee silk solution was developed and both Fourier transforms infrared spectroscopy (FTIR) and X-ray diffraction analysis (XRD) as a characterization experiment was performed. As a result of the study, a material containing bee silk with a stable structure was developed, and it was determined that it is suitable for medical and biological use. Besides, a composite product was formed by assembling honey bee silk solution with chitosan solutions of different concentrations. This study will pave the way for the usage of natural honey silk as a biomaterial for biomedical applications.

OP-105 [Aphthotherapy]

Current status of bee venom research and industrialization in Korea

Sang Mi Han1, Soon Ok Woo2, Se Gun Kim3, Hyo Young Kim3, Hong Min Choi3, Seon Mi Kim1, Kyun Kyu Park2

1Department of Agricultural Biology, National Institute of Agricultural Sciences, South Korea
2College of Medicine, Daegu Catholic University

The therapeutic value of bee venom (BV) from honeybee to improve the quality of life of patients is acknowledged since more than a hundred years in oriental medicine for the treatment of arthritis through clinical trials. The current study on the efficacy and mechanism of bee venom started with the development of a bee venom collecting device in 2005. Previously, there was no way to collect bee venom in Korea, so bee venom research was impossible. The major breakthrough was carried out in nine steps. The first step is to develop a bee venom collecting device. The bee venom collecting device is a device that collects only bee venom in large quantities without killing bees. The second step is to develop a purification method to maintain uniformity and high purity of the collected bee venom components. The third study on the use of bee venom for use as natural antibiotics instead of chemical antibiotics in livestock breeding. Fourth, research on various functions of bee venom was investigated in vitro, and fifth, pharmacological efficacy of bee venom was investigated in animal models. In addition, the safety of bee venom for oral use was investigated. Eighth, in order to secure the reliability of bee venom, a manual for the production history of bee venom was developed. Lastly, we are conducting clinical trials with bee venom to develop an acne treatment drug. Currently, in Korea, bee venom is used as a raw material for oriental medicine, cosmetics, and detergents.

OP-106 [Bee Health]

The potential use of fermented bee pollen as a probiotic supplement for bees

Adriana Cristina Urcan1, Adriana Dalida Criste1, Otilia Bobiș2, Daniel Severus Dezmiran2

1Department of Microbiology and Immunology
2Life Sciences Institute “King Michael I” of Romania
3Department of Apiculture and Sericiculture

Antibiotics are often used by beekeepers for treatment of bee diseases which raised concerns about their overuse and antibiotic resistance, losses of beneficial microorganisms, and the risks of antibiotic residues identified in bee products. A new strategy to improve the health of honeybees is the study of their microbeome and the use of probiotics in the treatment and prophylaxis. The aim of this research was to use probiotic fermentation of bee pollen to obtain a product with high nutritional properties, increased bioavailability and with beneficial bacteria for bees’ gut microbiota. Lactobacillus plantarum and Lactobacillus acidophilus were used for the fermentation process. The viability of lactic acid bacteria in the fermented pollen was tested. The total amount of polyphenols before fermentation was between 3.22-12.35 mg/g sample and after fermentation between 5.24-15.64 mg/g sample. Regarding the total flavonoid content, the results showed that the fermentation had a positive effect on their quantity. The amount of flavonoids prior to fermentation was between 1.18-6.23 mg/g sample and after fermentation between 2.11-8.98 mg/g sample. The statistical analysis of the obtained data confirmed that there are significant differences between the chemical composition of bee pollen samples before and after fermentation and that fermentation process has led to an increase in value of bioactive compounds, such as phenolic compounds, which are known to have antimicrobial potential. Further in vivo research is needed to evaluate the bioavailability of the probiotic bacteria from the obtained product and its beneficial impact on bees health.

OP-107 [Bee Health]

Breeding honey bees for low Varroa growth (LVG) in Canada

Ahavo De La Mora1, Nuria Morfin1, Paul H Goodwin1, Paul G Kelly1, Brena Einsen1, Daniel Borger2, Les Eccles2, Ernesto Guzman-Novoa3

1School of Environmental Sciences, University of Guelph, Guelph ON, Canada
2Ontario Beekeepers’ Association Tech Transfer Program, Guelph ON, Canada

The ectoparasitic mite Varroa destructor and the viruses it transmits are among the main threats to honey bee health worldwide. In Canada, V. destructor has been associated with more than 85% of beekeeper-collected losses. Most beekeepers investigate mite control to Varroa infestations, but the mites soon develop resistance against their active compounds, compromising their effectiveness. Therefore, it seems necessary to develop different control strategies. One of the main keys is to use the beneficial effects of reducing mite infestation and deformed wing virus (DWV) levels in honey bee colonies. We are currently conducting a breeding program to select bees for low and high rates of V. destructor population growth (LVG and HVG, respectively), and monitoring infection rates of DWV. After three years of bidirectional selection, significant differences between the two selected populations were found. DWV population increases over the summer of 2020 compared to 10 folds for HVG colonies. Additionally, LVG colonies had significantly lower insect infestation rates and 7 times more mutilated mites compared to HVG colonies. DWV prevalence and levels were significantly higher in HVG colonies than in LVG colonies. Worker mortality rates of colonies were significantly lower for the LVG genotype than for the HVG genotype. The results of this study thus far indicate that selection for LVG may result in colonies with lower V. destructor infestation rates, lower prevalence and levels of DWV, and higher colony winter survivorship. Future work will focus on determining what mechanisms are responsible for the genotypic differences, estimating genetic parameters, and conducting molecular analyses of the genotypes to identify candidate genes associated with resistance to V. destructor and DWV, that could potentially be used for marker-assisted selection of mite-resistant honey bee strains.

OP-108 [Bee Health]

Honey Bee Watch: an international scientific initiative for the protection of survivor colonies

Steve Rogenstein
The Ambassadors, Berlin, Germany

After humans, honey bees are the most studied animal on the planet, largely due to their critical role in maintaining biodiversity and food security. However, despite so much research onApis species, wild populations are astonishingly underrepresented in the scientific literature.

Honey Bee Watch aims to address this lapse by building an international coalition and developing engaging digital citizen-science tools in order to collect data from around the world to better understand the biological, behavioral, and environmental traits that encourage free-living and untreated colonies to survive—ever thrive—amid the threat of various pests, parasites, and pathogens.

Currently the overall status of Apis mellifera in the wild remains unknown, prompting the IUCN Red List’s “data deficient” classification in 2014. Related, the statuses of the remaining Apis species (mostly in Asia) have not yet been assessed on a widespread. These circumstances, therefore, urgently call for more investigative efforts regarding the prevalence and health of wild honey bees globally to facilitate their future conservation, if deemed necessary.

To that end, Honey Bee Watch has launched an online mapping platform, which will collect extensive data on the presence and localization of survivor honey bees over the course of several years. Once such data has been identified, a network of regionally coordinated operators will be deployed to validate questionable cases, monitor nests’ activity, and collect samples according to standardized protocols. Molecular tools and big data analyses will also be utilized to assess honey bee health and genecis diversity in relation to their surrounding environment, thus providing a more holistic perspective when considering conservation efforts.

Once sufficient data have been analyzed, Honey Bee Watch will then enter its second, concurrent phase: education and conservation. During that stage the objectives will be to increase general awareness about the importance of honey bees, provide ample data to IUCN to reassess the status of wild European A. mellifera populations and establish the statuses of native Asian Apis species, as well as roll out regional conservation campaigns in an effort to preserve survivor populations.
The nature of a survivor: population dynamics of Varroa destructor in a resistant, commercial honeybee (Apis mellifera) population over the active season

Melissa Oddie¹, Bjørn Dahle²
¹Norges Bivreterlag, Kræft, Norway
²Norwegian University of Life Sciences, Department of Animal and Aquacultural Sciences, Ås, Norway

Varroa destructor has been a central problem to European honeybees and beekeepers for decades, vectorsing disease and increasing colony losses, but more and more beekeepers are finding ways to breed for resistances to this parasite. One such population in the Oslo region of Norway has been carefully selected now for more than twenty years, with mite treatments no longer needed to prevent significant colony losses. Here we sampled the mitefall continuously throughout the entire active season in 25 of these surviving hives and 25 control colonies sourced from a stock that was treated annually. The average mite loads in the surviving population did not tend to exceed 10 mites per day at any point in the active season, while control population loads grew from approximately 5 mites per day to an average of 35 mites per day with a large variation between colonies. Though there were some colonies in the surviving population that did have high late summer counts between 20-35 mites per day, the number was very few (16%), and no colonies exceeded 35 mites per day. The control population had many more colonies within and exceeding this mitefall range (48%) with some colonies as high as 100 mites per day. The results from this study show that this selected honeybee population manages V. destructor loads throughout the entire active season and extremely infested “mite bomb” colonies are absent from the population.

Determination of Expression Levels of Some Candidate Genes Responsible for Grooming Behavior in Muğla honey bee (Apis mellifera anatoliaca) population bred against Varroa

Dilek Kabaci¹, Ümit Karataş², Gökhan Akdeniz², Murat Çankaya³, Kemal Karabag⁴, Rahşan İvgin Tunca⁵, Mehmet Kuzucu⁶
¹Mus Alparslan University, Muş, Turkey
²Zücrican BinAli Yildirim University, Erzincan, Turkey
³Akdeniz University, Antalya, Turkey
⁴Mugla Sıtkı Koçman University, Mugla, Turkey
⁵Mugla Honey Bee (Apis mellifera anatoliaca) colonies which was bred against varroa and 23 control colonies were used as material. Expression levels of Hym, AmNrx1, CYP9Q3 genes, which are thought to be related to grooming behavior in the study, were determined in qPCR using SYBRgreen probes. As a result, it was determined that Hym, CYP9Q3, AmNrx1 gene expression levels in breeding colonies increased by 496%, 472% and 382% compared to control colonies. In the study, statistical differences were found between the breeding and control colonies in terms of Hym, Cyp9Q3 and Amnr gene expressions (p<0.01). Based on this result, it can be said that breeding against Varroa increased the expression level of candidate genes thought to be responsible for grooming behavior, and therefore, grooming behavior also increased. This study was supported by TAGEM/HAYSÜD/Ü/20/A4/P5/1857.

Keep it simple: the power of ranking test results in the context of breeding for resilient honey bees

Dirk C De Graaf, Valérie Villers, Ellen Dannseels, Marleen Brunain, Regis Lefebre, Lina De Smet, David Claeyss Bouvaert
Ghent University, Department of Biochemistry and Microbiology, Ghent, Belgium

Six years ago, a breeding program was set up in Flanders to improve the genetics of our honey bees. It is a three-year program that consists of motivated breeding, testing the performance of the colony in the second year and propagation by larva grafting in the third year. We follow the internationally accepted test protocols, supplemented with some of our own protocols. For example, ‘suppressed in ovo virus infection’ or SOV is an important trait for resilience against viruses that we even use as an exclusion criterion for further propagation. From the start, we have chosen to keep the evaluation of the test results fairly simple and to move away from breeding value estimation. Instead, the test results are ranked from best to worst and divided into quartiles. By summation of the scores of the individual tests, we then obtain a global breeding rank. You could call it a simple mass selection. The advantage of this approach is that it is easily accessible and beekeepers can even participate if they only have one queen to be tested. Test results of previous years are not taken into account in the assessment. As a result, we saw the number of tested queens growing each year. After the winter of 2021-2022, we collected information about winter mortality among the tested colonies and calculated which parameters in the breeding program were related to this. The results show the importance of individual resilience traits on survival and which tests require further adjustments. Integrating traits related to productivity, such as honey production, reduce the predictive value of breeding rank regarding survivability. In the future, we should consider opting for a negative selection where the underperforming queens are excluded from propagation instead of positive selection of the best ranked queens. Negative selection also benefits the genetic diversity of the honey bee which is an important weapon against new threats such as climate change.
OP-114 [Beekeeping Technology and Quality]

Monitoring internal conditions in honey bee colonies during the winter period in different apiaries in north-western Spain

Ana Ríquez Antó, María Shantial Rodríguez Flores, Olga Escuredo, Laura Meno Farías, Sergio Rojo Martínez, Maria Carmen Segue Coello
Department of Vegetal Biology and Soil Sciences, Faculty of Sciences, University of Vigo, Ourense, Spain

In recent years, monitoring bee hives through technology has become a tool for a better understanding of the colony’s behavior. These systems are used for different purposes: predicting swarming, health status of colonies, prevention of death, hive abandonment or quantification of nectar flow, among others. Monitoring systems are useful to anticipate decisions without having to move to the apiary or disturb the honey bee colonies. This is an important issue in the winter time as the hives cannot be checked and it is unknown how the status of the colonies. In this work, we have used hive monitoring systems to register the internal and external conditions of hives in apiaries. The aim was to predict the status of the colony in winter time with monitoring systems interpreting internal parameters in the hives. The study was carried out under field conditions using four apiaries situated in different geographical areas of Galicia (NW Spain). Eight honey bee colonies were monitored from October 2020 to March 2021 using B-Keep monitoring systems. The strength of the colonies was measured following the methodology proposed by Delaplane et al. (2015) using ImageJ software. Temperature and relative humidity inside the colonies were related to temperature and relative humidity in each apiary. It was observed that the internal parameters of the stronger colonies were less correlated with the external parameters than those that were weaker. It has been seen that the daily thermoregulatory capacity of the colonies differs according to the status of each colony, being able to establish a direct relationship between this capacity for thermoregulation and the strength of the colonies. Hence, monitoring systems could help beekeepers to improve their understanding of the colonies in the winter time by following the status by the internal parameters of temperature and relative humidity. Furthermore, it is a tool useful in order to synchronize the subsequent management of the colonies in relation to the following spring to increase the productivity.

OP-115 [Beekeeping Technology and Quality]

Comparison of different preservation treatments and the effect on quality descriptor parameters in bee pollen

Enrique Mejias, Rodrigo Pizarro, Carlos Gómez, Tatiana Garrido

1Centro de Tecnologías Nucleares en Ecosistemas Vulnerables (CTNEV), División de Investigación y Aplicaciones Nucleares (DIAN), Comisión Chilena de Energía Nuclear (CCHEN), Santiago, Chile
2Abelie Consultores, Santiago, Chile
3Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile

Bee pollen corresponds to conglomerates of plant pollen that the honeybee Apis mellifera carries from the flowers to the hive in a cavity in the third pair of legs. It has been described as a product rich in nutrients, including various compounds that can confer important biological properties such as antioxidant capacity. The botanical origin of bee pollen is responsible for the nature and properties of the bioactive compounds.

The preservation of the original properties of bee pollen depends to a large extent on the treatments it receives after being harvested and on the storage conditions that ensure the quality of the product at the time of consumption. The botanical origin of bee pollen is responsible for the nature and properties of the bioactive compounds.

In this work, samples of bee pollen from central Chile (n=10) were analyzed for quantification of routine quality parameters, pigment concentration and antioxidant activity. The samples were then divided into two equal portions to generate two sets of samples. The first set of samples was subjected to conventional dehydration, while the second set was subjected to ionizing radiation at three levels of intensity.

Finally, the quality descriptor analyses were repeated, and the values obtained in both pollen groups were compared with the baseline values previously recorded in the untreated samples. This study presents the results of the performance of both sets of samples against each of the treatments and the advantages, costs and benefits of both methodologies in terms of final pollen quality and post-harvest preservation times.

OP-117 [Beekeeping Technology and Quality]

How ready are beekeepers for Precision Apiculture Systems (P.A.S.)? A pan-European survey

Philippos Verdeskal, Giulia Mainardi, Etienne Minaud, Fabrice Requier, Ingolf Steffan Dewenter, Fani Hatjina
1Elinikos Georgikos Organismos "DIMITRA", Department of Apiculture, Nea Moudania, Greece
2University of Wurzburg - Department of Animal Ecology and Tropical Biology, Wurzburg, Germany
3Université Paris-Saclay, CNRS, IRR, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France

Considering the relentless pace in which our personal and professional lives are being transformed daily by Information and Communication Technologies, Precision Apiculture could not stay behind for long. While beekeeping is still a mainly traditional sector compared to other agricultural ones, Precision Apiculture Systems (P.A.S.) and academic studies around it are on the rise.

As part of the European BeeConnected Programme, we carried out a standardised survey aiming at understanding to what extent beekeepers are willing or prepared to implement such technologies in their apiaries. The main objectives of the survey were to understand the reasons behind the use or disuse of such systems and which type of P.A.S. beekeepers would be more inclined to resort to in the future. The survey was translated in 4 languages (English, Greek, French and German) and spread over beekeeping networks in France, Germany and Greece. Overall, 538 beekeepers participated to the survey and about half of them had used some form of P.A.S. in their activities.

The results presented will highlight the factors and barriers that influence beekeepers decision on a P.A.S. installation in their apiary. Finally, we will provide insights for the efforts needed to be made from the market in order for those systems be more accessible for a larger use by beekeepers.

OP-118 [Beekeeping Economy]

Speaking of Bees

Ted Dennard
Savannah Bee Company

Ted Dennard worked with bees from a young age and upon graduation from university he served as a Peace Corps volunteer in Jamaica working with beekeepers and teaching beekeeping in schools for two years. His passion for bees and raising awareness about how important and wonderful they are led him to start Savannah Bee Company. It began with 50 beehives and sold pure raw honey, honeycombs, lip balms and beeswax candles. The company now sells all over the United States as well as operates 15 retail stores called Savannah Bee Company. There are hundreds of honeybee related SKUs sold that range from mead to bee books. The company employ around 200 people and has started a not-for-profit BeeCause Project that has put beehives in over 500 schools to raise a generation that loves and will protect the honeybees. The company uses the bee hive as a symbiotic model for business where profits are tied into purpose, where the sales of products fuel more awareness of the role honeybees play.

In addition to giving meaningful purpose to and improving the economic health of individuals, he has worked to improve the health of our world, promoting honeybee awareness. By founding the Bee Cause project to inspire the next generation of beekeepers in 2014 and joining forces to bring vitality back to Exuma in the Bahamas by reintroducing honeybees into the environment, Ted has used local honey cooperatives to make the world a better place. His work in the Peace Corps set him up for a lifetime of servitude and honeybees have helped him fulfill this role.
OP-119 [Beekeeping Economy]

Organic Beekeeping Businesses in Turkey: Economic Structure and Sustainability

Turkay Kılıç1, Gökhan Akdeniz1, Vedat Ceyhan2
1Apiculture Research Institute, Ordu, Türkiye
2Öndokuz Mayıs University, Samsun, Türkiye

From production to consumption, organic beekeeping is a regulated and certified production model that uses only approved inputs and avoids the use of medications that are harmful to human health. In Turkey, 387 growers produced 70,385 colonies and 1,028 tons of organic honey in 2022. By conducting a face-to-face survey with 118 organic beekeeping firms in Turkey, this study aims to show the economic structure and sustainability of the enterprises. Migratory beekeeping accounts for 42.37% of organic production businesses, while stationary beekeeping accounts for 57.63% percent. According to the findings, variable expenses account for 57.78% of the costs of the investigated businesses, while fixed costs account for 42.22% percent. Income per colony, cost, honey sales price, and cost per colony decrease as the size of the enterprise grows. Honey sales account for 91.47% of the enterprises’ revenue. According to enterprise types, although migratory beekeeping firms have a higher total cost per colony, stationary beekeeping enterprises have a higher total income per colony, honey production cost, and honey sales price. Economic sustainability is found to be low in 12.7 percent of assessed businesses, medium in 65.3 percent, and high in 22 percent.

OP-120 [Beekeeping Economy]

Physical, Chemical Features and Mineral Substance Profile of Turkish Pine Honey

Neuvat Artuk1, Aslı Özök2, Mehmet Emin Duru3, Sevgi Kolaylı4, Şeref Tepe5
1Ankara University, Ankara, Turkey
2Hacettepe University, Ankara, Turkey
3Hugla Simit Kocman University, Hugla, Turkey
4Karadeniz Technical University, Trabzon, Turkey
5General Directorate of Agricultural Research And Policy TAGEM, Ankara, Turkey

A comprehensive research is planned to determine the chemical composition properties of Turkish Pine Honey and to introduce pine honey to the whole world in our country, where 92% of the total pine honey is produced in the world. For this purpose, 373 pine honey samples were collected from 47 honey production regions (33 different harvesting regions) in provinces where pine honey is produced. The main purpose of this project, which is carried out as a TAGEM project, in this project, the average humidity of pine honey is 16.07%, the average electrical conductivity is 1.39 mS/cm, viscosity is 27.42 Pa.s, optical conversion is 1.06, free acidity is 18.57 meq/kg, proline 408.57 mg/kg, diastase number is 14.11, Fructose / Glucose ratio is 1.13, Fructose + Glucose is 54.28% in total, and the amount of sucrose is 18.4%. Maltose was not detected in 373 pine honey samples. Color parameters were also examined within the scope of the project. The average Hunter a value was 19.58, b value was 76.02, and L value was 58.62. Considering these values, it was determined that Turkish pine honey generally has a green, yellowish, medium dark color (light amber color). A significant part of the pine honey samples examined in terms of copper, zinc, manganese, nickel, lead and cadmium remained well below the analysis detection level. As a result of the research, the difference between provinces, districts, regions and years is statistically significant (p<0.05). It has been determined that Turkish Pine Honey is also an important source of potassium and iron. The absence of traces of maltose in any of the samples examined is considered an important output. With the project, it has been confirmed that the NH4/NTP ratio is not a sufficient criterion for the distinction between pine honey and flower honey, and that pollen analysis should be supported by optical rotation and electrical conductivity analyses. Honey does not pose any risk to human health. In addition, the results show that the C4 ratio in pine honey should not be considered as a food counterfeit and adulteration parameter.

OP-121 [Beekeeping Economy]

The effect of Covid on the honey sales of the hobbyist beekeeper in Ireland

Eleanor Attiude
Munster Technological University (MTU), Rossa Ave Bishopstown, Cork, Ireland

Covid 19 closed down farmers’ markets and changed the way consumers shopped and socialised. It effectively shut down the Irish economy during the lockdown period. Small food producers and hobbyist beekeepers were abandoned overnight and needed to come up with another avenue to market their goods in particular those who brought fresh produce to market.

The aim of this paper is to evaluate an alternative route to create a market for online honey sales on a local level for the hobbyist beekeeper and to evaluate the success or failure of the online sales from the beekeeper’s perspective. The hobbyist beekeeper depends on local markets and corner shops. The compulsory closure of the local farmers’ market was detrimental to all small producers. They are not in a position to supply a big supermarket chain nor do they have the expertise or marketing experience to set up their own online sales.

Data was harvested from a relatively new online portal “Neighbourfood” with pre-Covid figures and the overnight effect that Covid had on online sales for the hobbyist beekeeper as more depots opened across the Cork region to facilitate the “click and collect” online purchases of fresh food. Honey was one of the stable produce in their shopping baskets. There was an 800% increase in online honey sales, with consumer demands for new products increasing as people experimented with home cooking and new recipes. The demand for show quality beeswax blocks created a niche market as those at home entertained themselves by making zero-waste food packing in the form of beeswax wraps. The cappings wax is ideal for this product. Cut comb honey sales also grew by 150% during that period. The local corner shops also had 200-300% increase in honey sales and appear to have held on to that market share post-lockdown.

While the online market was a victim of its own success during the Covid lockdown it will fight to hold a market share with the post-Covid re-opening of Farmers Markets. It will require substantial social media coverage and further investment to keep and hold a market share.

OP-123 [Bee Health]

Breeding for Resistant Bees

Fathi Hating, Raquel De Sousa, Pierre Giovanazz, Ernesto Guzman Novoa, Melissa Oddie
Aipmonida Federation

The parasitic mite Varroa destructor is a major challenge to beekeeping industry worldwide. Since varroa appearance in Europe, beekeepers rely on the use of synthetic or organic substances for repeated treatment. The effect of using acaricides to control varroa mites has long been a concern to the beekeeping industry due to unintended negative impacts on honey bee health, the increased resistance of mite populations to acaricides, the residues in the bee products and the high costs and labour.

Long-time ago now, a well-known behaviour of the honey bees has been proven to be advantageous against the mites, named grooming behaviour, hygienic behaviour and Varroa Sensitive Hygiene, the recapping ability (Hawkins & Martin 2021), the size of the natural build comb, the post capping duration or reduced reproduction/ no reproduction of varroa mite and the suppressed in ovo virus infection.

A recent review described the existing Varroa-resistant populations in Europe and the regulatory mechanisms of the naturally surviving population. Probably there are also similar surviving populations in other parts of the world.

The questions to be addressed during this WS are:

- Do we know of populations showing resistance or tolerance to varroa mite? Have we tried to breed from those and disseminate queens to beekeepers?
- Is this feasible in a country level and not only experimentally and what is the time frame and the cost of such an attempt, from the time a laboratory or association starts this attempt till the time beekeepers could be benefited.
Virtual Reality in Training of Beekeeping: Seeing Future Through Virtual Hives

Sedat Sevin1, Nafiye Koç2, Ender Yarsan1
1Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Ankara University, Ankara, Turkey
2Faculty of Veterinary Medicine, Department of Parasitology, Ankara University, Ankara, Turkey

The honey bee, Apis mellifera L., is regarded as one of the most significant insects that have benefited humankind for medicinal and nutritional purposes. It plays a vital role in agriculture not just for honey production but also for pollination. Turkey ranks third in the world's hive count with approximately 8 million hives. However, the average honey yield per hive is significantly lower than the global average. The low yield per hive is due to a number of factors including bee diseases and pests, pesticides used in agriculture, climate change, beekeepers’ wrong practices, and a lack of contemporary beekeeping practices. Other challenges in beekeeping include the lack of emphasis on beekeeping education and the age of beekeepers in Turkey. Virtual reality (VR) is a method of visualizing items in order to observe 3D models of a specified environment. Additionally, mathematical models can be added to such items to enhance the immersive learning experience. Therefore, VR technologies provide opportunities to deliver practical education in ways not possible through traditional methods. Some research suggests that honeybees are well-known models for the study of visual learning. In this study, VR scenarios were created for practical training in beekeeping, utilizing honeybee morphology and biology. Sensory feedback, such as sound, was added to the scenarios to make them more realistic. The scenarios include beekeeping materials and their usage, monitoring of some bee diseases and pests, as well as drug applications in disease control. In this regard, a Virtual Reality Laboratory was created at the Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University. Training has begun in this laboratory, and students have easy access to beekeeping practices regardless of the season. So far, it has been observed that it contributes to the creative learning process by facilitating students’ interests and understanding. In the future, the laboratory will be open to anyone interested in learning about beekeeping.

Online blooming reporting system for beekeepers

Ole Kiljan1, Lise Hansted, Flemming Vejnaers
Danish Beekeepers Association, Søre, Denmark

The blooming of flowers is essential within beekeeping regarding foraging and timing of beekeeping practices. It is discussed if climate changes influence blooming periods locally and geographically. We developed an online reporting blooming calendar, a homepage (works like an app), where beekeepers report blooming of the most important bee plants. This makes it possible to collect and display information on blooming in different parts of the country and over the season.

The system consists of three basic functions:
1. Bee plant calendar. This is a list of the most important bee plants with information about blooming periods, pollen color, prevalence, and importance for the bees. The plants are ordered according to blooming time, making it easy to find the most important, currently blooming, bee plants. General information about the plants is restricted to a Wikipedia link.
2. The blooming reporting system. Here you just choose the plant and report whether blooming is just beginning, in full bloom or the late phase of blooming. As it is designed for use on the mobile phone, position, time, and date are known in advance. The user has free access to an overview of blooming reports for the different bee plants and how they are distributed over the country and over the season.
3. A pollen recognition system. As colors on electronic equipment are imprecise, we have combined our online system with a physical pollen field guide, which shows the precise colors. With this combination at hand, the beekeeper can place pollen pellets on a color scale and find the best matching color. By choosing this color in the online pollen recognition system, the most likely matches are shown. Matches are based on the pollen color, how relevant/attractive the plants are to the bees, their prevalence, and their blooming status.

Access to the system is completely free and can be found on www.biplanter.dk. It is designed for Danish beekeepers, but most text is also available in English. Other languages are planned to be included. You must set up a user profile to register blooming of bee plants. It is free of use.

Effects of Different Levels of Chelated Mineral Supplement (Bonza®Bee) On the Population Size and Brood Rearing in Honey Bee Colonies (Apis Mellifera)

Ruhollah Kianfar Kianfar1, Mohammad Hassan Nazarani2, Hamed Vaeez3, Somayeh Kalanaky4, Sadeh Fakhrzadeh5, Zahra Sadat Arzanforoosh6, Rina Bider7, Maryam Hafiz8
1Department of Animal Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
2Research and Development Department, Sadoru Ahar Shargh Company, Tehran, Iran
3Department of Animal Science, University of Tabriz, Tabriz, Iran

In this study, the effects of chelated mineral supplement (Bonza®Bee) on the population size and brood rearing in Apis mellifera were investigated. This experimental was conducted in a completely random design with 5 experimental treatments and 5 replications (hives) for 90 days in summer. Experimental treatments include: control (without Bonza®Bee) and chelated mineral (Bonza®Bee) supplementation (2, 4, 6 and 8 g/L Bonza®Bee, respectively), which were diluted in sugar syrup 1:1 (50% water and 50% sugar) and provided to the honey bees for 90 days. Measurements of brood rearing and hive population size were performed. To measure the size of the population, the method of estimating comb full of bees or a fraction of a comb was used, and to measure the brood rearing, a comb divided by wire into squares of 5*5 cm was used. The results showed that there was a significant difference between treatments in mean brood rearing and population size in the whole experimental period (P<0.05), so that the treatment of 4 g of Bonza®Bee was the most (19% more laying). In terms of population size, the treatment of 4g Bonza®Bee had 20% more compared to control group. Therefore, Bonza®Bee supplementation in the feeding of honey bees, in the concentration 4 g, positively affect on the population size and brood rearing in honey bee colonies.

Monitoring honeybees' health using environmental DNA (eDNA) contained in honey

Soliemn Patalano1, Anastasios Galais1, Philippos Vardakas2, Martin Reczko1, Vangelis Harkopos1, Pantelis Hatzi1, Ethvionis Skoulakis1, Georgios Pavlopoulos1
1Institute for Fundamental Biomedical Research (IFBR), BSRC ‘Alexander Fleming’, 34 Fleming Street, 16672, Vari, Greece
2Institute of Animal Science & Department of Apiculture, Nea Moudania, Greece

The difficulty in monitoring honeybees’ health and their potential diseases lies, in part, in the numerous variables leading to their vulnerability; the lack of plant resources, their exposure to pesticides and contacts with pathogens species such as Varroa. Therefore, the development of effective methodologies to simultaneously and holistically capture as many of these variables is strongly required.

The increase availability of sequenced genomes and the decrease in prices for sequencing make the analyses of eDNAs through metagenomics more and more accessible. We are going to present the results of an optimized methodology to extract eDNA from honey and a bioinformatic pipeline for the characterisation of the species composing honeybee ecological niche.

The results of this work reveal that, over the seasons, it is possible to identify the foraged plants surrounding the apiary while characterising the honeybee diet adaptations subsequent to flowering changes. In addition, this approach allows the identification of honey of bacterial eDNAs constitutive of honeybee gut microbiome, which composition provides important insights in bee health. Finally, our study brings evidences that monitoring Varroa hive infestation can be also reveal by measuring eDNA in honey.

In conclusion, this study suggests that honey metagenomics has the potential to comprehensively described honeybee ecological niches and can be tested as a building block for large scale studies to assess bee health in the field.
 Advances in palynological analysis of bee pollen loads

Paulo Russo Almeida1, Rodica Margașoi2, Țuțuș Daștan3, Ufuk Alpat3, Etienne Bruneau4, Aslı Özkök5, Hongliang Li6, Ofélia Anjos7
1Laboratório Apícola (LabÁpis), Departamento de Zootecnia, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal.
2University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Romania
3Balparmak R&D Center, Altiparmak Food Co., Çekmeköy, İstanbul, Turkey
4CARI, Louvain-la-Neuve, Belgium
5Hacettepe University, Bee and Bee Products Application and Research Center (HARUM), Beytepe, Ankara, Turkey
6Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
7Instituto Politécnico de Castelo Branco, Castelo Branco, Portugal

The bee pollen trade has been increasing and is already a considerable source of income for many beekeepers. The botanical and geographical origin of bee pollen is a key factor in determining its quality and is highly relevant to its valuation. Therefore, the standardization of methodologies for accurately establishing this information is of special importance. There are a modest number of studies and a multiplicity of methods is used for estimating the botanical profile and even greater diversity for the criterion used to classify bee pollen into mono or multifloral. The latter is of particular importance to commercial companies as it influences the commercial price of bee pollen.

In order to test some of the potential factors causing the variability of the results obtained, some changes were implemented in the first proposed methodology, which improved reproducibility within and between laboratories. Preliminary results indicate the need to increase the pollen sample size to 5 g to improve its representativeness and count at least 600 pollen grains to reduce the fluctuation of results.

The size and shape of pollen grains are extremely variable depending on the botanical origin, so the value of the percentage of each pollen species in the bee pollen is not enough indicator to classify it as monofloral. It is proposed as a minimum criterion, that a given species should represent at least 80% of the volume of bee pollen grains, to be classified as monofloral.

The performance of an interlaboratory Test within the scope of the work of the "ISO/TC 34/SC 19 - Working Group (WG3): Bee Pollen", involving 11 laboratories, also showed a high variability of results, reinforcing the need for methodological adequacy and optimization in this area.

To determine some of the potential factors causing the variability of the results obtained, some changes were implemented in the first proposed methodology, which improved reproducibility within and between laboratories. Preliminary results indicate the need to increase the pollen sample size to 5 g to improve its representativeness and count at least 600 pollen grains to reduce the fluctuation of results.

The size and shape of pollen grains are extremely variable depending on the botanical origin, so the value of the percentage of each pollen species in the bee pollen is not enough indicator to classify it as monofloral. It is proposed as a minimum criterion, that a given species should represent at least 80% of the volume of bee pollen grains, to be classified as monofloral.

In OP-128 [Beekeeping Technology and Quality]
The strenuous road toward honeybee stock self-sufficiency

Pierre Giovenazzo1, Andrée Rousseau1, Ségolène Maucourt1, Mireille Levesque1
1Département de biologie, Université Laval, Québec Canada
2Centre de recherche en sciences animales de Deschambault

The beekeeping industry in Canada and many other countries relies on honeybee stock importation to replace winter mortalities and increase number of active colonies. These imports incur various risks (for example new pathogens, undesired or maladapted bee genetics) and undermine efforts of local breeding programs. The sustainability and self-sufficiency are major concerns of the Canadian beekeeping industry and various actions have been taken to reduce our dependence on honeybee stock importation. First, our research group is promoting the establishment of a breeding program using quantitative genetics and the BLUP model and secondly, we have developed a novel method to successfully winter large number of young, mated queens from September to April (queen banking). These banked queens are available early spring and can replace many of the imported queens. These actions contribute significantly to maintain local honeybee stock, improve colony performances, colony resistance to pathogens and overall increase sustainability and self-sufficiency of our beekeeping industry.

As a result, the effects of physical stress factors on spermatological parameters have been shown in in vitro studies with bee semen. Thus, some safe limits were tried to be determined by measuring the changes of honey bee semen, which has limited cryopreservation ability, against mechanical effects.

Effects of Various Mechanical Factors on Honeybee Sperm

Abdulkadir Kaya, Numan Akyol
Department of Reproduction and Artificial Insemination, Kirikkale University, Turkey

Many studies have been carried out on the cryopreservation of honeybee semen around the world. However, the desired level of success in the cryopreservation of bee semen has not yet been achieved. In this study, it was aimed to more effectively determine the effects of stress factors on sperm viability and some parameters during the cryopreservation and processing of honeybee semen. For this purpose, the effect of osmotic pressure change by short-term exposure of semen to a sucrose solution with an osmolality of 200, 250, 300, 400 and 500±5 mOsm/kg, repeated pipetting application 5, 10, 15 and 20 times and 600, 800, 1000 and 1200 °G values were centrifuged and physical endurance tests were carried out. After the procedures, the groups were examined in terms of motility, plasma membrane integrity and mitochondrial membrane potential. The obtained data were evaluated statistically and the differences in spermatological parameters between the groups were determined by One-Way Analysis of Variance and Post Hoc Tukey method. According to the findings, at 300±5 mOsm/kg, the mean of motility, PMB and MMP were determined as 5/5, 83.66% and 83.33%, respectively, but high or low osmotic pressure negatively affected spermatological parameters. In addition, it was determined that the application of repetitive pipetting up to 800 G with centrifugation up to 5 times had an acceptable effect in terms of spermatological parameters. As a result, the effects of physical stress factors on spermatological parameters have been shown in in vitro studies with bee semen.

As a result, the effects of physical stress factors on spermatological parameters have been shown in in vitro studies with bee semen. Thus, some safe limits were tried to be determined by measuring the changes of honey bee semen, which has limited cryopreservation ability, against mechanical effects.

Comparison of the chromatographic and palynological methods used to identify the botanical origin of propolis: Which method is more reliable?

Etil Guzelmer1, Tuğçe Daștan2, Erdem Yesilda1
1Yeditepe University, Faculty of Pharmacy, Department of Pharmacognosy, Kayisdagi Cad., Atasehir, 34755, Istanbul, Turkey
2Balparmak Research Center, Altiparmak Gida San. Tic. A. S., Cavusbasi Cad., Çekmeköy 34782, Istanbul, Turkey

Honeybees collect resins from plants (buds, leaves, branches etc.) to produce the miraculous substance named propolis. Propolis-type is defined based on the plant source with the highest proportion in its composition. Different propolis types are described in the world that botanically originated from Dalbergia ecastophyllum (L.) Taub., Baccharis dracunculifolia DC., Populus nigra L., Populus tremula L., Macaranga tanarius (L.) Müll. Arg., Clusia minor L. and C. major. In propolis studies, determining the botanical origin should be the first step since its main chemical composition is directly related to its botanical source. For example, green propolis originated from B. dracunculifolia and is rich in artepillin C, whereas caffeic acid phenethyl ester (CAPE) is the main component of propolis from P. nigra. This chemical variation may also affect its pharmacological activity profile.

To determine the botanical source of propolis, two methods are mostly employed, i.e., chromatographic and palynological analyses. Since honeybees may gather resins from unopened buds (Populus spp.), identifying pollen grains by microscopy, i.e., palynological analysis, would not be a realistic approach to determine the botanical origin of propolis. This work aimed to comparatively analyze propolis samples obtained from different geographical regions of Turkey using chromatographic and palynological techniques and discuss their validity for identifying the botanical origin of propolis collected in Turkey.

Province Key Laboratory of Bee Genetics and Biotechnology, Zhejiang University, Hangzhou, China
Nature-based beekeeping
Nicola Braithwaite
President, ApiMondia Scientific Commission Beekeeping for Rural Development

The UN Food and Agriculture Organization (FAO) and many other voices world-wide are calling for Nature-Based Solutions for agriculture. This means working to protect, sustainably manage and restore natural or modified ecosystems - which can simultaneously provide benefits for human well-being and for biodiversity. Nature-based systems mimic natural processes and rely on ecosystem functioning to ensure food and livelihood security, healthier diets for people, and more inclusive rural economies.

Nature-Based Beekeeping is a solution that can deliver triple benefit: supporting agricultural production and resilience, mitigating against climate change, and enhancing nature and biodiversity.

During the past century, as a community, we beekeepers have done many things that have not been for the long-term benefit of the beekeeping sector. We have moved honey bees and other bee species around the world, with species and races of bees moved beyond their natural distribution and into new regions, diseases introduced far beyond their original distribution, with huge consequences for nature and biodiversity, and for the people that depend upon them for their livelihoods.

It is time to end this behaviour, as we begin to understand the irreparable havoc that we have caused.

It is time for a fresh approach. Nature-Based Beekeeping is based on knowledge of how bees live in nature, always using local populations of bees, and in many cases, looking again at local, Indigenous knowledge systems. To ensure food and livelihood security, healthier diets and more inclusive rural economies, beekeeping must be feasible, and must utilise local skills and materials to make and use low-cost hives and equipment.

During this Symposium we will consider the financial, social and environmental resilience provided by Nature-Based Beekeeping systems underway world-wide.

Nature-based commercial beekeeping in North America
Tucka Saville
Beekeeper, USA

In spring 2019, I caught eighty swarms of bees and started my business: Tucka Bee LLC. I now keep 300 colonies in South Florida and upstate New York, USA. Some aspects of my beekeeping appear very natural and others do not. This management style is my best attempt at a mutually beneficial relationship between myself, the bees in my care, the local ecosystem, and my human community. I provide queens, honey, candles, live removal and education at fair market prices and sometimes for free.

My business allows me to live simply but well. I now have the time and energy to support my friends in their agricultural and community projects. I host international apprentices and interns. I travel in winter to swap ideas with others who practice nature-based beekeeping around the world. My best advice in beekeeping and life? Observe and adapt to reality.

This talk will discuss my management style, survival strategies for bees and humans, and a network of inspiring individuals across North America who have shaped my understanding of bees, and with whom I continue to learn.

Nature-based, commercial beekeeping in Europe
Sébastien Bonjour, Anne Bonjour Daimon
Beekeeper, France

Beekeeping practices to improve colony resilience.

From Fukukoa's inspiration in agriculture, the objective is to interfere as little as possible with the honey bee colonies, with a respectful attitude towards the bees. Interventions are limited to aim at harmony. Climate change in the past 20 years has considerably impacted the available resources and decreased honey production. When a lot of beekeepers have chosen more intensive management to compensate for the losses, there is an opposite way to preserve the resilience of the colonies to these environmental changes.

A global own selection in a one health approach results in honey bees well adapted to their environment. Colonies that are not able to deal with the rarefaction of the resources will not be chosen for multiplication. From a patient observation of the colonies during two years, colonies are ranked according to the mean performance values of the apiaries. Then the reproducible performing colonies are splitted. Fecundations are done in isolated natural areas to preserve the genetic stock from outside inputs. Queens are never sacrificed and are naturally replaced by the colony. The large number of colonies allows to maintain a high level of diversity.

This management leads to colonies adapted both to their environment and to the practices of the beekeeper.

Economic and environmental reality of nature-based beekeeping in Africa
Janet Lowowe, Giacomo Ciriello
Bees for Development

Honey bees thrive in ecosystems characterised by semi-deciduous forests across tropical and subtropical Africa. We give examples of highly successful nature-based beekeeping from the montane forests of SW Ethiopia, the miombo woodlands of Zambia and the Volta basin of Ghana; where bee husbandry can be as simple as siting a hive, waiting days for a swarm to colonise it, and knowing when and how to harvest.

Beekeepers' main problems are, in common with beekeepers everywhere, dealing with changes in seasonal patterns, use of pesticides, deforestation and shifts in local farming practices. Beekeepers can overcome these problems to produce large harvests, however they then face the difficult task of negotiating a fair price with a reliable buyer.

The Projects Team at Bees for Development discuss the nature of environmental and economic challenges, and finding strategies to address them, drawing on experience of supporting beekeepers in these regions.

Looking at the economics of honey and beeswax trade from the perspective of beekeepers, packers and consumers, reveals information gaps which hinder value chain development. Well-targeted interventions that bridge such gaps sustainably, can deliver great benefits for people, forests and bees.

Nature based beekeeping in South America
Pablo Chipulina, G. B Schach, Marta Soneira
Beekeeper, South America

The impenetrable Chaqueño is an area with 3.5 million hectares of native forest, a territory crossed by the waters of the Tehuero Bermejop River, its unique flora and fauna due to its diversity giving rise to the creation of the El Impenetrable National Park. It is located in the northern area of the province of Chaco, Argentina.

It is an inhospitable area with 350km of dirt roads, with little communication, which means that its inhabitants, native and Creole peoples, have few job opportunities. Performing temporary jobs or dedicating themselves to raising goats and sheep.

Beekeeping production with organic certification enabled more than 74 families to find their way of life. They created the "Association of Young People of the Impenetrable Chaqueño", an organization that brings together producers in the area. They have 1,750 bee hives in production which are managed, jealously guarding the conditions established in the organic production protocol. The product is processed in 2 honey extraction rooms authorized by National Service of Food Health and Quality.

What allows guaranteeing the quality of the product, bringing all the flavor of the impenetrable area to the tables of the world’s consumers. The 210 drums of honey marketed in the 2021-22 campaign highlighted the importance of discussing the "native forest" as a generator of sustainable income.

Treatment-free beekeeping
Faiz Hatjina
ApiMondia Federation

Nature-Based Beekeeping is based on knowledge of how bees live in nature, always using local populations of bees, and increasingly, relying on the inherent resilience and genetic integrity of honey bee populations to maintain bee health. The above statements also constitute the basis for Sustainable Beekeeping.

One of the major issues bothering the beekeeping community across the continents is the need of varroa treatment and...
the possibility to cope without treatment, given that Varroa mites are the only pests for which an authorised treatment exists in most countries. At the same time, the effect of using acaricides to control Varroa mites has long been a concern to the beekeeping industry due to unintended negative impacts on honey bee health, contamination of hive products and resistance of the honey bee populations. For all above, treatment-free beekeeping is the alternative solution.

Untreated and survived colonies exist in several countries, some of which have been surviving for more than 14 years. The natural resistance of these populations has been investigated and different hypotheses can explain this phenomenon, such as honey bees becoming resistant to the mite and its associated viruses, or the mites have evolved to be less virulent; a co-evolution between those actors in their typical biotopes could have been favoured. Specific traits of the honey bees such as the hygiene behaviour and the recapping of the uncapped cells have been associated with the varroa resistant populations. At the same time characteristic traits of the varroa mite, such as the reproduction ability, has also attributed to be responsible. It is very likely that these mechanisms do not operate alone but function in combination. The importance of specific adaptations may also vary across environments. Considering all the above as well as the need to keep the varroa mite loads as low as possible, mechanical interruption of the mites' reproductive cycle, or the removal of a significant number of mites, has also been suggested as a method controlling varroa, still keeping the colonies free from any treatments.

Nature based beekeeping with as less interventions as possible might be the way forward. Still the question to be discussed is the economical aspects of the approach, and the cost-benefit balance, especially when we are referring to commercial beekeeping or large scale beekeeping.

OP-138 [Beekeeping for Rural Development]

Inflation-free beekeeping
Dickson Biryomumaisho, Janet Lowore
Bees for Development

Inflation is real and is hitting the poorest people in the world hardest.

In Uganda the poor struggle to afford food, clothing, housing and healthcare. Using ingenuity and perseverance the poor draw on assets and means within their reach to build resilient livelihoods and this includes nature-based beekeeping, using free resources to make a living. Yet these solutions are sometimes viewed as ‘ancient’ or ‘traditional’, with no place in the 21st century. Too many projects promote instead expensive hives, purchased from equipment manufacturers. The World talks about resilient and sustainable livelihoods, but in practice promotes unsustainable solutions. Relying on external inputs and beehive donations is not sustainable.

As inflation soars the merits of nature beekeeping becomes even more evident. The inputs required - bees, forage and natural hive-making materials - are largely immune to current high inflation rates.

Beekeepers face challenges in getting their produce to market and in negotiating fair prices but their nature-based beekeeping systems are resilient, sustainable and inflation-proof.

It remains a constant frustration that too many beekeeping development projects focus their efforts and resources on changing these resilient beekeeping systems.

In this presentation we examine the underlying drivers which lie behind the never-ending plethora of beehive donation projects and discuss their impacts. We offer nine appropriate solutions to maintaining and enhancing the contribution of beekeeping to sustainable livelihoods in Sub-Saharan Africa.

OP-139 [Beekeeping for Rural Development]

Importance of Nature-Based Beekeeping for Human Health
Cristina Mateescu
Apimondia Federation

Humans and bees have always had a strong and special relationship. This connection relies first on the fact that almost 2/3 of the plants on the planet are pollinated by bees, making these tiny delicate insects vital for food supplies. Bees are also very important for the high nutritional, medicinal and economic value of their products. Honey and the other products like pollen, bee bread, propolis, royal jelly, bee venom and beeswax are subject to intensive pharmacological and clinical research, but are still awaiting for confirmation and recognition in the medical world. Issued from nature-based beekeeping, raw honey has several health benefits in both internal and external applications. Bee pollen and bee bread are important for their nutritional qualities and their health relationship claiming antioxidant, antiinflammatory, antibacterial, heart and liver protecting activities. Propolis is an excellent “natural medicine” with antioxidant, antiinflammatory, antimicrobial, immune protecting and anticancer properties. Royal jelly may offer a good support both as food supplement in case of poor nutrition, but also for its health related effects on the nervous system which might prevent several neurodegenerative diseases. Bee venom, an unique product of the bees is a hope for many degenerative and inflammatory diseases, while beeswax has many applications in pharmaceutical industry and not only. To ensure that the whole spectrum of nutritional and therapeutic properties are properly harnessed, these products have to be free of any contaminant, being it a chemical agent, a bee medicine or pesticide residues. Practicing a nature-based beekeeping which requires a little capital and a low-cost maintenance, may provide, beside economic benefits, food security, an improvement of the quality of life and a beneficial effect on the environment. In terms of health, nature-based beekeeping may be also a real “mind and body therapy” for people practicing this old and noble occupation.

OP-142 [Bee Biology]

Advances in cryopreservation of honeybee embryos: Optimisation of the first steps
Sarah Guerm1, Carole Moreau Vauzelle2, Stéphane Graetze2, Elisabeth Blelbois3, Pierrick Aupinel2, Florence Guignon1

1Inrae, UMR85-PRC, F-37380 Nouzilly, France
2Inrae, UE1255-APIS, F-17700 Surgères, France

Embryo cryopreservation is a valuable tool to conserve genetic biodiversity in Biobanks. However, in insects it is limited by technical difficulties. Indeed, the honeybee embryos are surrounded by two protections, the chorion and the vitelline membrane. Moreover, they contain important vitellus reserves. Here we present the technical progress achieved in our laboratory to prepare the honeybee embryos for liquid nitrogen vitrification.

Two experiments were performed. In order to have the best basic medium during bee embryo cryopreservation, we tested the in vitro embryo survival and the larval emergence in 3 commercial media: Grace’, TNM-FH, and Schneider’ Insect media. Next, in order to minimize the handling of the extremely delicate embryos, we reduced the number of steps during the cryopreservation protocol by doing the impregnation with the cryoprotectant at the same step than chorion permeabilization. All embryos used were collected from Apis mellifera ligustica breed in artificial cell plugs during spring. At the time of tests, they were up to 24 hours old. Our results showed that TNM-FH insect medium was the most suitable one (best larval emergence rate: 62.4%, versus 47.1% and 53.3% for Schneider’ and Grace’ Insect media respectively, n = 250 embryos per group). We showed that it was possible to permeabilize the chorion by sonophoresis during the cryoprotectant impregnation step without reducing the rate of larval emergence (54.8% versus 53.5% in two separate steps, n=350 embryos per group). Further experiments, sustained by ‘Lune de Miel’ foundation, are currently running in our laboratory to continue improving the honeybee embryos cryopreservation.
OP-143 [Bee Biology]

Cryopreservation of Honey Bee Semen

Saffet Sanlı1, İrfan Kandemir2, Brandon Kingsley Hopkins3, Aziz Gü4

1Department of Breeding and Biotechnology, Apiulture Research Institute, Ordu, Turkey
2Department of Biology, Ankara University, Ankara, Turkey
3Department of Entomology, Washington State University, Pullman, WA, USA
4Department of Animal Science, Hatay Mustafa Kemal University

Honey bee genetic diversity is under threat due to high colony losses and preference for and movement of a few select subspecies. Cryopreservation of honey bee semen could be a valuable method for long-term storage of gametes and contribute to the conservation of honey bee genetic diversity. Cryopreservation process consist of several stages including mixing semen with extenders and cryoprotectants then gradual freezing before long-term liquid nitrogen storage. The method has been successfully used for long-term storage of gametes from many important domesticated animal species. While comparatively few studies have been published on honey bee cryoconservation; there has been a flourish of successful methodologies published recently. However, the success rates of recovering fertilized offspring from cryopreserved honey bee semen remains low. Nevertheless, cryopreservation technique provides a precious way to preserve the honey bee diversity; and fortunately, there remains a great variety of potential solutions in the pursuit of increasing fertility of frozen/thawed honey bee semen.

OP-144 [Bee Biology]

Validation of Calcein Violet as a new marker of semen membrane integrity in Apis mellifera drones

Sophie Eychtgen, Flore Brutinel, Fabien Ectors, Jérôme Penther, Stéfan Deleuze

PARAH of Faculty of Veterinary Medicine, University of Liège, Liège, Belgium

Membrane integrity, most commonly assessed by double staining with SYBR*4 (SYBR) and propidium iodide (PI), is considered to reflect viability. PI is routinely included in semen evaluation. Many fluorochromes emit in the green and red channels, limiting their possible combinations for multiple parameters analysis. Although previously suggested for that purpose, Calcein violet (CaV), a permeant viability dye that emits fluorescence after esterification of the non-fluorescent calcein violet acetoxymethyl into fluorescent calcein violet, has never been validated as a marker of semen viability in honeybee drones.

This is the first study that establishes CaV as a reliable marker for viability of drone semen using SYBR/PI as reference dye, heat-treated samples as negative control, and serial staining combinations. In all samples, dead spermatozoa were marked in red with PI and none of them showed violet fluorescence within the head and the tail. Live spermatozoa showed a decreasing violet emission from head to tail when single stained with CaV, or from the tail only when CaV was combined with SYBR.

Establishing CaV as a marker of membrane integrity by fluorescence microscopy is a decisive first step towards further development with flow cytometry. As CaV fluoresces in violet, it frees the green and red light spectrum channels and broadens the possibilities of combinations to expand the range of parameters simultaneously evaluated in a multiple parameters analysis of semen. This will be particularly beneficial for honeybee drones that have a very small volume of ejaculate and where sample size is an issue.

OP-145 [Bee Biology]

OP-146 [Bee Biology]

New approaches in propolis extraction methods

Ibrahim Demirbas1, Adem Necip2

1Department of Biochemistry, Faculty of Science and Arts, Igdir University, Igdir, Turkey
2Department of Pharmacy Services, Health Services Vocational School, Harran University, Şanlıurfa, Turkey

Due to the fact that bee products have bioactive components, both its use with other food products or alone are considered functional foods. Functional foods have become important in recent years because affect our health positively and protect them from diseases. The most well-known bee products are honey, pollen, royal jelly, propolis, bee venom and beeswax. The feature that distinguishes propolis from many other bee products is that although it contains many phenolic components, its direct use is not suitable for health. For this reason, different methods could be developed for the extraction of propolis and its different uses. In this study, water, DMSO, ethyl alcohol and propylene glycol were used as solvents. The effects of different solvents and extraction times on the dry matter and total phenolic contents to be obtained will be presented. One, fifteen and thirty days were determined as the extraction time. Although the extraction time increased in direct proportion to the amount of dry matter and total phenolic content, it was observed that it was not always directly proportional to the solvent used. Although the amount of dry matter obtained by water extraction at the same time was very low, it was determined that the total amount of phenolic substance was higher than that of other solvents.

OP-148 [Bee Biology]

Modelling relationships in honeybee colonies and populations with SIMplyBee

Jana Obšteter1, Laura Strachan2, Jemee Bubnic3, Janez Prešern1, Gregor Gorjan2

1Department of Animal Science, Agricultural Institute of Slovenia, Ljubljana, Slovenia
2The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
3Department of Pharmacy Services, Health Services Vocational School, Harran University, Şanlıurfa, Turkey

Computer simulations are an important tool in animal breeding, used for in silico testing of breeding decisions and statistical methods. Simulators must incorporate quantitative genetics theory and be flexible enough to allow the user to simulate different scenarios. We have developed such a software takes the honeybees called SIMplyBee as an extension of the AlphaSimR package. The simulator works in the R environment by simulating individual bees with their individual genomes and combining them into objects representing a honeybee colony. A set of colony objects can be further combined into a colonies object representing an apiary or any other population of honeybee colonies. In this way, the user can explore different quantities, such as relationships or quantitative phenotypic values, at the individual, colony, or even population level. The simulator allows for the simulation of the complementary sex determination (csd) locus

OP-144 [Bee Biology]

Relation between seminal fluid proteins and semen quality in Apis mellifera

Maria Belén Bedescarrasb1, Anaïla Noelia Martinez1, Juan Ignacio Lobob1, Javier Maioranob1, Federico Andres Hobrob1, Cristina Esther García1, Juan Alleen1, Maria Alejandra Palacioc1

1Instituto Nacional de Tecnología Agropecuaria Estación Experimental Balcarce, Balcarce, Buenos Aires, ARGENTINA
2Facultad de Ciencias Agrarias Universidad Nacional de Mar del Plata, Balcarce, Buenos Aires, ARGENTINA
3Instituto Nacional de Tecnología Agropecuaria Estación Experimental Balcarce, Balcarce, Buenos Aires, ARGENTINA;
Facultad de Ciencias Agrarias Universidad Nacional de Mar del Plata, Balcarce, Buenos Aires, ARGENTINA

INTA PROAPI’s honeybee breeding program (MeGA) has focused on the selection, preservation, and improvement to obtained superior genetic materials, which have been maintained for more than 16 years in a closed population by instrumental insemination. The efficiency in inseminations in the different genetic origins is not constant along the beekeeping season, quality of the semen could be one of the factors responsible of this variation. The objective of this work was to evaluate the quality of semen in drones of the closed population at different times of the beekeeping season. Trials were performed in the INTA Balcarce Experimental Station’s apiary (Buenos Aires Province, Argentina), where PROAPI is kept as a closed population, sampling at different times during the beekeeping season 2021-2022. Presumably mature drones were collected and placed in a stove at 34°C and 50% relative humidity, with food (honey) until semen extraction, which was carried out using a Harbo syringe, constituting a pool of each colony. The content of soluble proteins in the seminal fluid was determined using the Bradford method. Also, quality parameters of the semen were recorded: concentration (by counting in a Newbauer chamber with a 400x microscope), sperm motility and viability (by Eosin-Nigrosin staining) and plasma membrane functionality by Hypoosmotic Swelling Test. No relationship was observed between seminal fluid protein and semen concentration or motility. A significant correlation was recorded between seminal proteins with the number live spermatozoa observed with Eosin-Nigrosin (r = 0.85, p<0.0001) and with the number of non-functional membrane spermatozoa obtained by HOST (r = 0.50, p=0.0465). These preliminary results show the importance of the parameters associated with the nutritional status in the viability of drone semen and the need to develop knowledge on this topic.

OP-144 [Bee Biology]

Validation of Calcein Violet as a new marker of semen membrane integrity in Apis mellifera drones

Sophie Eychtgen, Flore Brutinel, Fabien Ectors, Jérôme Penther, Stéfan Deleuze

PARAH of Faculty of Veterinary Medicine, University of Liège, Liège, Belgium

Membrane integrity, most commonly assessed by double staining with SYBR*4 (SYBR) and propidium iodide (PI), is considered to reflect viability. PI is routinely included in semen evaluation. Many fluorochromes emit in the green and red channels, limiting their possible combinations for multiple parameters analysis. Although previously suggested for that purpose, Calcein violet (CaV), a permeant viability dye that emits fluorescence after esterification of the non-fluorescent calcein violet acetoxymethyl into fluorescent calcein violet, has never been validated as a marker of semen viability in honeybee drones.

This is the first study that establishes CaV as a reliable marker for viability of drone semen using SYBR/PI as reference dye, heat-treated samples as negative control, and serial staining combinations. In all samples, dead spermatozoa were marked in red with PI and none of them showed violet fluorescence within the head and the tail. Live spermatozoa showed a decreasing violet emission from head to tail when single stained with CaV, or from the tail only when CaV was combined with SYBR.

Establishing CaV as a marker of membrane integrity by fluorescence microscopy is a decisive first step towards further development with flow cytometry. As CaV fluoresces in violet, it frees the green and red light spectrum channels and broadens the possibilities of combinations to expand the range of parameters simultaneously evaluated in a multiple parameters analysis of semen. This will be particularly beneficial for honeybee drones that have a very small volume of ejaculate and where sample size is an issue.
and the removal of homoygous individuals. In this work, we demonstrate the use of SIMplyBee by exploring relationships and inbreeding within and between honeybee populations and subspecies. We simulated 10 years of closed mating within two purebred populations, A. m. carnica and A. m. mellifera, and hybridization between them. The latter served to inspect the effect of importing genetic material on relationships and inbreeding. After simulation, we examined whole-genome relationship coefficients based on three sources of information: i) expected identity by descent; ii) realized identity by descent; iii) realized identity by state by recording alleles of each honeybee. We observed relationships between i) workers within colonies, ii) queens within subspecies, and iii) queens between subspecies. In addition, we monitored inbreeding at the caudal level and the effect it has on the observed and realized whole-genome relationships. We observed a major impact on the caudal relationship coefficients, as the expected pedigree relationship exceeded the realized genome relationship coefficients, due to pedigree theory not accommodating for strong selection at the caudal locus. With this, we demonstrated that SIMplyBee is a powerful hypothesis testing tool for honeybee management and breeding.

OP-159 [Bee Biology]
Morphological Characterization of Selected Honey Bees (Apis mellifera L.) Originated from Western and Central Black Sea
Ahmet Kuvanci1, Serret Cınbırtoğlu2, Gökhan Akdeniz2, İsmail Eren1, Belgin Güney2, Samet Okuyan1, Ahmet Güler3
1Apiary Research Institute, Ordu, Türkiye
2General Directorate Of Agricultural Research And Policies, Ankara, Türkiye
3Ondokuz Mayıs University, Samsun, Türkiye

There are many races and their ecotypes adapted to different climatic and geographical conditions in Turkey. Genetic pollution has emerged in the region’s bees due to migratory beekeeping activities and queen bee sales across the country. The supply of qualified breeding material to beekeepers will make significant contributions to the increase in yield.

In the study, 200 colonies obtained from the non-migratory beekeeping areas of the Western and Central Black Sea Region were selected between the years 2014-2022. Queen bee was raised and artificial insemination was done every two years. During the artificial insemination, was taken not to inseminate queen bees with their relatives. Artificially inseminated queen bees were given all colonies and the population was completed to 200 again. Worker bee samples were taken during the swarming period from 50 selected colonies that completed the third generation, and morphometric measurements were made from 10 worker bees and 41 characters in each sample. Thus, it was provided to reveal the possibilities of comparison in terms of morphological characters with the Caucasian Bee (Apis mellifica Caucasia), Anatolian Bee (Apis mellifera anatolica), Hatay Bee (Apis mellifica syrica) and Yığılca ecotype of Anatolian Bee. Linear discriminant analysis was used for this comparison.

According to the function values, three different clustering areas were formed in the coordinate system. The first area is to cover the Hatay Bee (Apis mellifica syrica) and Anatolian Bee (Apis mellifera anatolica). The second area is to include Düzce-Yiğilca genotype and breeding material. The third area is only having the Caucasian Bee (Apis mellifica caucasia) bee race.

Hatay Bee (Apis mellifica syrica) samples were distributed in its own group at 100%. Anatolian Bee (Apis mellifica anatolica) 97%, Düzce-Yiğilca Genotype 98%, Caucasian Bee (Apis mellifica caucasia) 100%, and 100% of our breeding material was distributed to its own group.

With the selection studies, quality breeding material with high yield level, good development and high wintering ability has been obtained. The morphological characteristics of the breeding material were determined. It is important to protect, produce and deliver this important material to producers.

OP-181 [Bee Biology]
Predicting distribution modeling of Apis florea F. in the world
Shahram Parichehr1, Gholamhossein Tahmasbi2, Alimard Sarafraz3, Naser Tajabd3, Samaneh Sohijui Fard1, Hamed Rezaei1
1Honeybee Department, Animal Science Research Institute of Iran, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
2Department of insect Taxonomy Research, Institute of Plant Protection, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran
3Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

Climate change will markedly impact biology, population ecology and spatial distribution patterns of pollinators because of the influence of future greenhouse effect on insect development and population dynamics. The dwarf honey bee (Apis florea F.) is one of the most important pollinator species of tropical and regions of Iran and other countries. Considering the importance of dwarf honey bee as an important pollinator in the world, the current study was carried out to model spatial distribution and future distribution of dwarf honey bee in 2070 and to assess the effect of environmental factors on its population distribution. For this purpose, 75 occurrence records and documented available were used for the modeling. Potential distribution map was created using maximum entropy (Maxent) model based on recorded data and eight different climate variables. The results of this study showed that the maximum distribution probability was that of the Paleartctic region. Southern regions of Iran, Saudi Arabia, India and south-eastern regions of Asia were found as the best regions for the presence of the species. According to the Jackknife test, the variables mean temperature of warmest quarter, precipitation seasonality and temperature seasonality showed the maximum contribution in the species distribution modeling. The results indicated that under climate change scenario (CCMCA, CSR0), suitable habitats for Apis florea will increase towards 2070. Based on our results, it can be concluded that suitable places for distribution of dwarf honey bee will be increased in the future.

OP-152 [Bee Biology]
Morphometric Characterization of Cypriot Honeybee Apis mellifera cypriaco and Its Venom Cytotoxic Effectiveness against Cancer Cells
Ayşe Nalbantsoy1, Ekin Varol2, Dila Çalışar1, Banu Yuçoğlu2
1Honeybee Department, Animal Science Research Institute of Iran, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
2Department of Bioengineering, Faculty of Engineering, Ege University, Turkey

Bee venom is a valuable bee product that has an important place in the health and cosmetics sector. Studies conducted in recent years showed that the composition of bee venom varies according to seasonal conditions, regional differences and pollen sources. For this reason, it is very important to determine the bee venom content in different geographical conditions and flora. With its productive characteristics, the Cypriot bee is a bee race whose characteristics are on the verge of disappearing with the hybridizations made over the years because of its aggressive character. For this reason, this study will provide basic information for obtaining data of Cypriot honeybee venom, standardizing bee venom and making it an apicultural product. In the present study, venom samples were collected from different 2 apiariums of Cyprus (Maleag and Magosa) Village and Lefkosa Center. The samples were kept in absolute ethanol. Additionally, venom samples were collected from Mallidag and Magosa Villages, and their composition was determined after venom obtained and stored by scraping. All samples lyophilized, stored in dry condition at +4 °C in amber bottles. Classification of bee races made by geometrical morphometry method. The venom samples of determined races and ecotypes compared with biochemical analyzes and with way, Cypriot honeybee venom profile tried to be defined. Venom protein contents were determined by BCA protein assay. A panel of cancerous (prostate, glioblastoma, cervix, lung, colon, breast, pancreas cells) and non-cancerous (healthy lung fibroblast cells) cells were screened for determining cytotoxic potential by MTT assay in order to carry out apitherapeutic application. The protein content estimated at 67.36 ± 26.09 µg/ml for Malad (Magosa) Village sample and 77.60 ± 73.25 µg/ml for the Lefkosa Center sample in mg/ml lyophilized crude venom. IC50 values of the cells treated with Malad (Magosa) Village venom varied between 3.83 ± 0.55 µg/ml and 23.97 ± 0.53 µg/ml while cells treated with Lefkosa venom had IC50 values approximately between 6.73 ± 1.38 µg/ml and 18.80 ± 3.08 µg/ml. Data obtained from the experiments proved that venom samples from Cyprus showed high potential against cancerous cells. Further experiments will lead to the way in Cyprus for increasing the apitherapeutic applications with venoms that can easily found throughout the country and make a contribution to Cyprus economy.

OP-153 [Bee Biology]
A mobile phone application to survey and monitor the wild colonies of Apis mellifera
Paolo Fontana, Daniele Andreis, Valeria Malagnini
Technology Transfer Center, Fondazione Edmund Mach, San Michele all’Adige (TN), Italy

Although Apis mellifera have been reared by humans for millennia, it remains a wild animal as reported by ancient authors and modern beekeepers and researchers. Until a few decades ago, wild colonies of Apis mellifera were largely common. However, since the early 1980s there has been a rapid and underestimated rarefaction of the wild colonies due to a parasite, the Varroa destructor mite. The effect of the Varroa mite on unmanaged colonies was so strong that today in Europe most of the surviving honey bees live in hives managed by beekeepers. Indeed, for many years it has even been thought that in Europe wild honey bees were disappeared. Rather surprisingly, there are no scientific studies on this phenomenon and the only available information deals with the number and distribution of honey bee colonies owned by beekeepers and their reports and interest in wild honey bee colonies have increased significantly and today we can say that even in many areas of Europe these colonies are still there. The app BeeWild intends to survey and monitor these wild colonies through a typical citizen science action.
Discrimination of honey bee biodiversity by using wing area measurement
Songül Bör, Merve Kambur Acar, Meral Kekerçoğlu
Düzce University, Graduate School of Sciences, Department of Biology, Düzce/Turkey
Düzce University, Faculty of Science, Department of Biology, Düzce, Turkey
Düzce Vocational School, Düzce University, Düzce, Turkey

Twenty nine honey bee breeds have been defined, each of them is adapted to a certain environmental characteristics, spreading all over the world except the Antarctic continent. Many morphometric characters have been used to classify honey bees from past to present. Studies have proven that front wing features are suitable characters to classify honey bees. In recent years, more partial and easy methods have been researched to classify honey bees through images of bee wings. In this study, a total of 3392 worker bee samples were collected from 143 colonies in 19 provinces in order to differentiate honey bee populations in our country. Measurements of 7 areas (A1, A2, A3, A4, A5, A6, A7) on the right front wings of honey bee populations distributed in Turkey were made automatically in the BAB Bzl200Pro program. The photographs of the prepared preparations were taken with the BAB camera system connected to the BAB STR45 stereozoom microscope. The averages of the colonies for each population were taken and the results were evaluated with Discriminant Function Analysis (DFA) in the SPSS.15 package program. Area measurements of A1, A2, A3, A4 and A5 characters were determined to be marker characters in distinguishing Anatolian honey bee and Caucasian honey bee.

Impact of agroforestry on pollinator diversity
Sheryl A Yap, Sheryl A Yap, Clare Hazel R. Tabernilla, Jessica B. Baroga Barbecho, Jessica B. Baroga Barbecho
Institute of Entomology, Weed Science, and Plant Pathology, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna 4031 Philippines
Bee Program, Office of the Vice Chancellor for Research and Extension, University of the Philippines Los Baños, College, Laguna 4031 Philippines
La Granja Research and Training Station, Philippines: an inventory toward conservation of pollinators in an agricultural landscape
Jessica B. Baroga Barbecho, Sheine A. Hilado, Danilo N. Tandang, Sheryl A. Yap
Bee Program, Office of the Vice Chancellor for Research and Extension, University of the Philippines Los Baños, College, Laguna 4031 Philippines
La Granja Research and Training Station, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna 4031 Philippines
Botany and National Herbarium Division, National Museum of the Philippines, Padre Burgos Avenue, Ermita, Manila 1000 Philippines, and Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei 11529 Taiwan
Institute of Entomology, Weed Science, and Plant Pathology, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna 4031 Philippines

Discrimination of honey bee biodiversity by using wing area measurement

Impact of agroforestry on pollinator diversity
SafeAgroBee project and Socioeconomic survey on beekeepers and farmers opinion on importance of pollination services

Eftstathios Michalis, Clenence Riva, Noureddine Adjilane, Dalida Darazy, Janja Filipi, Gianni Gilio, Alenka Zunic Kosi, Roberto Pasi, Janez Presern, Fabrice Requier, Bojan Stipešević, Vassilios Stathopoulos, Andri Varnava, Irany Yamonn, Zden haired Hradec
1Department of Apiculture ELGO ‘DIMITRA’ - Greece
2UMR-EGCE Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie - France
3University of Bourgogne-Department of Agronomy/ UMBB-DZ - Algeria
4Lebanese University Faculty of Agriculture/ LUFA- Lebanon
5Department of Ecology, Agronomy and Aquaculture; University of Zadar/ UNIZD- Croatia
6University of Brescia/ UNIBS - Italy
7National Institute of Biology/ NIB- Slovenia
8ACME21 SRL/ ACME21- Italy
9Dept of Animal production- Agricultural Institute of Slovenia/ KIS- Slovenia
10Academy for Agrobiotechnical Sciences, University of J.J. Strossmayer in Osijek/ FAZOS- Croatia
11TERRA SPATIUM SA/ TSP- Greece
12Cyprus University of Technology/ CUT- Cyprus
13Lebanese Environment Research Institute/ LARI- Lebanon

The overall objective of SafeAgroBee is to contribute to adaptation and mitigation of the effects of climate change and other drivers negatively influencing the sustainability and the resilience of the agricultural system in the Mediterranean basin, ensuring the income of farmers and food security. In SafeAgroBee we focus on beekeeping and pollination provided by both wild and managed bees as important drivers in ruling food security and human existence. In order to better understand the knowledge and attitudes of farmers and beekeepers we have from each other as well as from their business perspectives, under the concept of pollination services provided by bees, we conducted a large socio-economics citizen-society study. Two questionnaires were designed with similar questions for farmers and beekeepers and translated to 5 partners’ languages. Additional 80 to that, translations were made in 4 other languages and in total the questionnaires were finally disseminated in 11 Mediterranean countries. This is the first time this type of survey is conducted in Mediterranean basin countries for registering the interaction and/ or collaboration between beekeepers and farmers. It is also very important as it highlights the need to a) increase awareness of both beekeepers and farmers for pollination benefits; b) increase productivity in the Mediterranean agroecosystems and c) develop measures to protect the bees.

OP-160 [Pollination and Bee Flora]

The World of Pollinators - threats to an ecosystem service: pressures on pollinators in Slovenia

Petra Bole1, Andrej Šalehar2, Ivan Eksen3
1Assis. prof. dr. Petra Bole
2PhD Candidate, Črnomelj
3Ivan Eksen

In Slovenia we are facing an increasing threat to some insect pollinators, as their numbers and diversity are declining, so that in some places we are already seeing insufficient pollination. Their decline or loss could have profound economic and environmental consequences. Honeybees and solitary bees, bumblebees, wasps, flies, beetles, butterflies, and moths comprise the vast majority of our’s pollinators. Many are crucial for the pollination of fruit, vegetable, oil, seed, and nut crops. They are crucial for human food security and health, and ecosystem function. We are presenting the situation in the field of pollination in Slovenia in a new book entitled World of pollinators in English, published this year by the Radovljica Beekeeping Museum.

In Slovenia, we are beekeeping with the Carniolan bee (Apis mellifera carnica), pollinators are also 35 different species of bumblebees and more than 550 species of other bees that have been found in our region. In the book we argue that multiple anthropogenic pressures, including land-use intensification, climate change, habitat fragmentation, pesticides use, agressive agriculture and the spread of alien species and diseases (above all varroosis) are primarily responsible for insect-pollinator declines. We show that a complex interplay between pressures (such as lack of food sources, disease and pesticides) and biological processes underpins the general decline in insect-pollinator populations. It is important to raise awareness of how crucial pollinators are for the survival of many plants and animals, how important they are to humanity and to take action, which is also presented in the book.

Ozone air pollution affects crop pollinators and pollination

Orianna Rolini1, Jesus Aguirre-gutierrez2, Izak A. R. Yasrebi De Korn3, Michael P. D. Garratt4, Arjen De Groot5, David Kleijn6, Simon G. Potts7, Jeroen Scheper8, Luisa G. Carvalheiro9
1Centre for Ecology, Evolution and Environmental Changes (c3E), Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
2Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
3Department of Medical Informatics, Amsterdam UMC, Amsterdam, The Netherlands
4Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK
5Wageningen Environmental Research, Wageningen University & Research, Wageningen, The Netherlands
6Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, The Netherlands
7Departamento de Ecologia, Universidade Federal de Goiás, Goiânia, Brazil

Environmental changes induced by human activities can increase the concentrations of polluting reactive compounds in the troposphere, such as ozone and nitrogen oxides. These changes can lead to a loss of biodiversity and alter plant

OP-158 [Pollination and Bee Flora]

Determination of bee foraging plants in honey of Northern Oman

Alia Mohamed Salehani, Sardar Farooq
Department of Biology, College of Science, Sultan Qaboos University

Present study is undertaken to determine the Omani honey floral sources and ecological origin. It was carried on 51 honey samples collected from 14 locations of Muscat and Al Batinah regions from Apis mellifera and Apis florea bee colonies. Acetolysis technique was used in the melissopalynological analysis. In 48 honey samples, 122 pollen types were identified representing 50 plant families. They were categorized as major and minor sources of nectar and pollen. Thirty-two honey samples were found unifloral and 16 multifloral. In Oman, the honey is harvested twice a year, i.e., in summer and winter. The results indicated that Zapphus spinos-rotii, Prosopis juliflora and Prosopis cineraria constitute the chief nectar and pollen sources for honeybees in this area in winter and Prosopis juliflora, Prosopis cineraria, Citrus sp., Acacia tortilis, and Maerua crassifolia in summer. In 249 pollen loads from 22 honeycombs, 74 pollen types distributed among 41 plant families were identified at different taxonomic levels. Sixty-seven pollen types were present in both honey samples and pollen loads. Their sources were categorized as nectar and pollen carriers, while 7 pollen types merely were found in the pollen loads therefore their sources were categorized as pollen sources for the honeybees. Twenty pollen types were recognized in the honey samples that were considered as nectar sources only. Summer honeys exceed winter honeys in the number of pollen types. Summer pollen loads contained more pollen types than winter pollen loads. The identified pollen/nectar sources reflect a wide range of foraging plant species for honeybees and encompass adequate potential for sustaining beekeeping ventures in Muscat and Al Batinah regions. Local pollen references were prepared to aid in the identification of pollen types. Out of 105 local pollen references, 74 were found matched with the pollen types of the honeys and pollen loads. The morphology and size of all pollen types were studied, and their light and scanning electron micrographs were obtained.
physiology and plant-pollinator interactions, essential for pollination services, with potential consequences for agricultural production. Taking into account possible interactive effects with landscape quality, pesticide input and climatic conditions, we investigated how air pollution (ozone and nitrogen oxides) and other sources of nitrogen (industrial, agricultural) is related to pollinator visitation rate and their contribution to agricultural production in different counties of Europe. We showed that ozone modulates the effect of pesticide exposure on crop pollinators, increasing the probability of negative impacts on crop pollination. Our results suggest that air pollution may have unexpected consequences for food safety and highlight the need for more sustainable transport and manufacturing policies to help safeguard biodiversity and related food production.

OP-164 [Pollination and Bee Flora]

Effect of Apis mellifera (Hymenoptera: Apidae) on Acacia crassicarpa fruit production in seed orchards in Riau, Indonesia

Budi Tjahjono1, Wagner Morais1, Muhamad Panunggu Sucakarya1, Abdul Gafur2, Budiman Harahap3, Rahmat Hidayat1, Saripah Ulap1

1Sinaras Forestry, Research & Development, Perawang, Riau, Indonesia
2Alexander von Humboldt Fellow, Bonn, Germany
3URR, Research Center for Pollination and Honeybees, Pekanbaru, Riau, Indonesia

Acacia crassicarpa is a key forest species for wood production in the pulp and paper industry in Southeast Asia and productive seed orchards are essential for the sustainability of this culture by ensuring genetic variability and propagation capacity. Apis mellifera among other bee species plays a major role in flower pollination of Acacia species and conserving such insects around seed orchards may positively impact the fruit and, eventually, seed production. This study aimed to compare the fruit production in A. crassicarpa seed orchards with and without A. mellifera introduced colonies. The honeybee colonies were introduced, in collaboration between an industrial forestry company and beekeepers from the local community, between October and November 2021 next to five seed orchards, 360 bees on three hectares each, in Riau, Indonesia. The orchards are composed of 8-year-old (average) A. crassicarpa trees in a total area of 79 ha surrounded by acacia, eucalypts, and palm oil plantations. Assessments were carried out in five randomly selected A. crassicarpa trees in each seed orchard and randomly selected in March 2022. Fruit production later, the number of young fruits was assessed. Seed orchards with no introduced bees were also assessed and the results were compared. The average number of flowers per branch was similar in orchards with and without A. mellifera colonies, 38.6 and 38.5, respectively (t-test, P=0.123). However, the number of young fruits per branch, in seed orchards next to the honeybees was 252% higher than that in areas with no introduced colonies, 38.9 and 15.5, respectively (t-test, P<0.001).

Honeybees are effective pollinators of many Acacia species, including A. crassicarpa, as suggested by the findings in this study. Part of the pollen collected by the bees is transferred to other flowers, increasing pollination success, and fruit and seed yield at the same time as considerable amounts of honey are produced. In conclusion, the introduction of A. mellifera bees contributed to increased fruit production of 252% in A. crassicarpa seed orchards and should have a big positive impact on final seed production.

OP-166 [Pollination and Bee Flora]

Combination of bee pollination of strawberry with fungicide application

Leonarda Adamčič1, Roman Dvynkalicu1, Yuri Balaknu1

1National University of Life and Environmental Sciences of Ukraine; National Science Center ‘PI Prokopovich Institute of Beekeeping’, Public Organization «Foundation of Women Beekeepers», Kyiv, Ukraine
2Department of Standardization and Certification of Agricultural Products, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
3USAID’s Agriculture Growing Rural Opportunities Activity (AGRO), Chemosyn International Inc.

The goal of the study was to investigate the effectiveness of the use of bees for fungicide treatment of plants during the pollination of strawberries. The work was carried out during July-August 2021 in the field of remnant strawberries «Agrosena» LLC within the project «Development of the market of controlled bee pollination in Ukraine», supported by the USAID’s Agriculture Growing Rural Opportunities Activity (AGRO). The bee colony can serve more than 5 M flowers. The norm for controlled pollination of 1 ha of strawberries is 8 bee colonies, so for a day bees of this number of colonies can serve 40 M flowers on 1 ha of strawberries. At the same time, the number of flowers per 1 ha of remnant strawberries for the entire flowering period is only 15 M. Such ratios ensure repeated cross-pollination, which ensures a high quality of pollination. In the successful placement of bees, the following factors play a role: length of flowering period, density of flowering areas, length of flowering period of the plant, and the number of flowering plants within a hectare. Bees on 1 ha of strawberries can cover the entire pollination area of the berries patch. In addition to pollination, honey bees can distribute powdered plant protection products. To do this, a special device is used. Earlier, we determined that one bee colony with the power of 6 honey bees can carry no more than 1 g of fungicide per day. The continuation of the experiment was the improvement of devices and use on 8 hives. The experiment was carried out on 1 ha of remnant strawberries for 10 days. As a result of controlled bee pollination, a single berry gained from 2 to 8 g in weight. The yield of bee pollination (by total weight of berries) where bee pollination was conducted increased by 25% compared to last year, which was $5,598 in cash equivalent.

OP-166 [Bee Health]

Sublethal effects of imidacloprid on immune gene expression in the stingless bee Melipona quadrifasciata

Mayra Ruas Costa, Anete Pedro Lourenco

Department of Biological Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil

Neonicotinoids are among the pesticides that act on the nervous system of target insects, which may produce unknown consequences for non-target insects. This group of insecticides are related to the decline of bee populations around the world. The presence of residual amounts of pesticides in pollen and nectar may be able to alter the molecular mechanisms that control the immune functions of insects. In the tropical region, the most abundant, diverse (>500 species) and efficient pollinator group in natural and agricultural habitats. These bees are threatened by multiple stressors, including pesticides. In this work we investigated the effect of a sublethal concentration of the neonicotinoid insecticide imidacloprid on the expression of immune genes in foragers of Melipona quadrifasciata. Foragers from three colonies were exposed orally to field-realistic doses of imidacloprid for 72 hours in the laboratory. Abdomen fat body was used to investigate expression of the immune genes abaecin and prophenolxidase by RT-qPCR. We observed different responses of the expression of these genes depending on the colony. In general, the expression levels of abaecin were higher in bees fed imidacloprid. On the other hand, bees fed insecticide from one colony showed downregulation of prophenolxidase expression when compared to the controls (bees fed with no insecticide). Thus, sublethal doses of imidaclopid were enough to dysregulate immune gene expression. These results reinforce that the ingestion of insecticide causes damage to the immune system of bees.

OP-167 [Bee Health]

Determination of neonicotinoid and glyphosate residues in pollen samples from Croatia

Damir Pavliček1, Ivana Tišak Gagger1, Nina Blanidžič2, Manja Denžić Lugomer3, Maja Đokić2, Ana Končurat1, Željko Cvetnić2

1Croatian Veterinary Institute, Veterinary Institute Krizevi, Krizevi, Croatia
2Croatian Veterinary Institute Zagreb, Zagreb, Croatia
3Faculty of Veterinary Medicine Zagreb, Zagreb, Croatia

Use of pesticides in modern agriculture has major adverse impact on non-target beneficial organisms, such as bees. While exploring the environment surrounding the apiary, hives and activity of collecting pollen, honey bees (Apis mellifera) are potentially exposed to pesticide contamination. In this study, residues of acetamiprid and neonicotinoids, which received significant attention due to their negative effects on insect pollinators and were consequently banned for outdoor use in EU, were examined in honey bee fermented pollen samples collected from hives in Croatian apiaries. Because of the differences in physicochemical properties of these two groups of systemic compounds dual approach was required, regarding development of the methods for their determination by LC-MS/MS. Since the quantification of glyphosate poses a major challenge due to the great polarity and amphoteric nature of the molecule, low molecular weight, high solubility in water and a lack of chromophore, single-residue method was implemented, including optimized sample preparation steps (QuPpe and SPE cleanup) and instrument conditions (porous graphitic carbon as a stationary phase). On the other hand, neonicotinoids were routinely analyzed using QuECHERS technique for extraction of target analytes followed by reverse-phase liquid chromatography coupled with tandem mass spectrometry for simultaneous determination of 11 compounds. Developed methods proved to be sensitive, with LOD values ranging from 0.3 to 3.4 nglg, while LOQ values were in the range 1.1 - 10.9 nglg. In total 44 samples of honeybee fermented pollen collected in 2020 and 2021 were analyzed. Among them 29 samples contained at least one pesticide residue above LOQ, which represents almost 66% of all analyzed samples. The highest frequency was associated with glyphosate (93% of positive samples), containing samples from a very low concentrations to a maximum value of 127 nglg. These results reflect the intensive use of neonicotinoids in agriculture and their presence in the environment. Although this herbicide does not appear as toxic to bees as some other systemic pesticides, it could be considered that the pesticide risk for honey bees can increase when some class of these chemicals act synergistically, amplifying the adverse effects of non-chemical stressors.
Toxicity assays in honey bees focus on the worker caste, possibly overlooking toxicity to the queens and drones. In an initial study, where bees of all three castes, of four age categories (larvae, newly emerged, young, and mature) were exposed to incremental doses of thiamethoxam (THI), a commonly used neonicotinoid, we demonstrated that THI toxicity is highly caste-specific. Namely, the queens were most sensitive to larval exposure, but most resilient after THI exposure post-emergence. Therefore, the aim of this study was to determine if there is a correlation between detoxification enzyme activity and the caste-specific susceptibility of honey bees.

We tested the induction of enzyme activity in bees in response to larval and/or adult THI exposure. Age-matched honey bee larvae received either water (control) or 25 ng THI through larval food contamination. At emergence, adult bees in these groups were further subjected to contact exposure of incremental doses of THI. Activity of esterase, glutathione S-transferase (GST), and acetylcholine esterase (ACHEst) were determined at emergence and 48 hours post contact exposure.

We found that enzyme activity is highly caste-specific; however, THI exposure during larval and/or adult stages did not have a significant effect on enzymes activity. Enzyme activity was highest in worker bees, followed by drones, and then queens. Enzyme activity of esterase, GST and ACHEst does not correlate with the differential caste survival in response to THI exposure observed in our previous studies. However, our findings highlight that enzyme activity is highly variable between castes, which may affect their susceptibility to insecticide toxicity and should be considered in future toxicity studies.

Varroa destructor, an Acarid species, is the world’s most harmful honey bee parasite that causes colony losses. It is well-known that various chemicals such as fluvalinate, flumethrin, coumaphos, and amitraz are widely used against Varroa. Frequent use of these substances has led to resistance to these chemicals in Varroa populations. Another problem is these chemicals leave residue in honey. These fat-soluble synthetic miticides accumulate in the beeswax and propolis. Because of that, usage of organic acids (formic, lactic, oxalic acid) and thymol-containing fragrant oils and usage of various herbs chemicals leave residue in honey. These fat-soluble synthetic miticides accumulate in the beeswax and propolis. Because of that, usage of organic acids (formic, lactic, oxalic acid) and thymol-containing fragrant oils and usage of various herbs have become widespread. New solutions for Varroa control are therefore needed.

Varroa destructor is the most important reason of beehive collapse. A variety of acaricides are used by beekeepers in beehives and honey. This work also provides fundamental insights into the molecular pathways targeted by each acaricide. Our work provides valuable information for the beekeeping community in relation with the persistence of acaricides in beehive and honey. We found that enzyme activity is highly caste-specific; however, THI exposure during larval and/or adult stages did not have a significant effect on enzymes activity. Enzyme activity was highest in worker bees, followed by drones, and then queens. Enzyme activity of esterase, GST and ACHEst does not correlate with the differential caste survival in response to THI exposure observed in our previous studies. However, our findings highlight that enzyme activity is highly variable between castes, which may affect their susceptibility to insecticide toxicity and should be considered in future toxicity studies.

Toxicity assays in honey bees focus on the worker caste, possibly overlooking toxicity to the queens and drones. In an initial study, where bees of all three castes, of four age categories (larvae, newly emerged, young, and mature) were exposed to incremental doses of thiamethoxam (THI), a commonly used neonicotinoid, we demonstrated that THI toxicity is highly caste-specific. Namely, the queens were most sensitive to larval exposure, but most resilient after THI exposure post-emergence. Therefore, the aim of this study was to determine if there is a correlation between detoxification enzyme activity and the caste-specific susceptibility of honey bees.

We tested the induction of enzyme activity in bees in response to larval and/or adult THI exposure. Age-matched honey bee larvae received either water (control) or 25 ng THI through larval food contamination. At emergence, adult bees in these groups were further subjected to contact exposure of incremental doses of THI. Activity of esterase, glutathione S-transferase (GST), and acetylcholine esterase (ACHEst) were determined at emergence and 48 hours post contact exposure.

We found that enzyme activity is highly caste-specific; however, THI exposure during larval and/or adult stages did not have a significant effect on enzymes activity. Enzyme activity was highest in worker bees, followed by drones, and then queens. Enzyme activity of esterase, GST and ACHEst does not correlate with the differential caste survival in response to THI exposure observed in our previous studies. However, our findings highlight that enzyme activity is highly variable between castes, which may affect their susceptibility to insecticide toxicity and should be considered in future toxicity studies.

Varroa destructor is the most important reason of beehive collapse. A variety of acaricides are used by beekeepers in beehives and honey. This work also provides fundamental insights into the molecular pathways targeted by each acaricide. Our work provides valuable information for the beekeeping community in relation with the persistence of acaricides in beehive and honey. We found that enzyme activity is highly caste-specific; however, THI exposure during larval and/or adult stages did not have a significant effect on enzymes activity. Enzyme activity was highest in worker bees, followed by drones, and then queens. Enzyme activity of esterase, GST and ACHEst does not correlate with the differential caste survival in response to THI exposure observed in our previous studies. However, our findings highlight that enzyme activity is highly variable between castes, which may affect their susceptibility to insecticide toxicity and should be considered in future toxicity studies.

Varroa destructor is the most important reason of beehive collapse. A variety of acaricides are used by beekeepers in beehives and honey. This work also provides fundamental insights into the molecular pathways targeted by each acaricide. Our work provides valuable information for the beekeeping community in relation with the persistence of acaricides in beehive and honey. We found that enzyme activity is highly caste-specific; however, THI exposure during larval and/or adult stages did not have a significant effect on enzymes activity. Enzyme activity was highest in worker bees, followed by drones, and then queens. Enzyme activity of esterase, GST and ACHEst does not correlate with the differential caste survival in response to THI exposure observed in our previous studies. However, our findings highlight that enzyme activity is highly variable between castes, which may affect their susceptibility to insecticide toxicity and should be considered in future toxicity studies.

Varroa destructor is the most important reason of beehive collapse. A variety of acaricides are used by beekeepers in beehives and honey. This work also provides fundamental insights into the molecular pathways targeted by each acaricide. Our work provides valuable information for the beekeeping community in relation with the persistence of acaricides in beehive and honey. We found that enzyme activity is highly caste-specific; however, THI exposure during larval and/or adult stages did not have a significant effect on enzymes activity. Enzyme activity was highest in worker bees, followed by drones, and then queens. Enzyme activity of esterase, GST and ACHEst does not correlate with the differential caste survival in response to THI exposure observed in our previous studies. However, our findings highlight that enzyme activity is highly variable between castes, which may affect their susceptibility to insecticide toxicity and should be considered in future toxicity studies.
the relative abundance of opportunistic pathogens such as Serratia spp. (e.g. S. marcescens), which can have devastating consequences for host health such as increased susceptibility to infection and reduced lifespan. Our findings raise concerns about the long-term impact of the novel insecticides Fipronil and Sulphur, particularly in Brazil, on pollinators and recommend a novel methodology for the refined risk assessment that should include the potential effects of agrochemicals on the gut microbiome of bees.

OP-172 [Bee Health]
Changes in the lithium level in bee products as a consequence of anti-varroa treatment

Eva Kolics1, Sajtos Zsófi2, Kinga Mátyás1, Kinga Szepesi1, Izabella Soilti1, Gyöngyi Németh1, János Taller1, Edina Baranyai3, András Speczal1, Bélács Kolics1
1Hungarian University of Agriculture and Life Sciences
2Debrecen University

The biggest threat to beekeeping is varroosis caused by the mite Varroa destructor. Chemicals available to treat this fatal disease may present risks of resistance or inconsistent efficacy. Recently, lithium chloride has appeared as a potential alternative. To date, little is known about lithium treatments, and its impact on the health of honeybees.

OP-173 [Bee Health]
BEST PRACTICES AND INNOVATIONS FOR A SUSTAINABLE BEEKEEPING IN EUROPE: THE B-THENET Thematic Network

Marco Pietro Paolo2, Chiara Po Caterari3, Riccardo Jannini Sebastiani4, Alexandre Almeida5, Lotta Fabricius Kristiansen6, Noa Simon Delso7, Flemming Vejsnaes7, Peter Kozmus8, Aranzazu Meana9, Fani Hatjina10, Yahya Al Naggar11, Paolo Fontana12, Anna Locsin13, Robert Chlebo14, Tuck Saville15
2Faculty of Medicine, Universitas Indonesia, Campus UI Salemba, Jakarta 10430, Indonesia.
1Research Centre for Biomedical Engineering, Faculty of Engineering, Universitas Indonesia, Campus UI Depok, West Java 16425, Indonesia.
3Faculty of Pharmacy, Universitas Indonesia, Campus UI Depok, West Java 16425, Indonesia.
4Federation International Des Associations D'Apiculture, Rome, Italy
5Globaz, S.A., Oliveira De Azemeis, Portugal
6Bee Life European Beekeeping Coordination, Louvain La Neuve, Belgium
7Danmarks Biavlerforening, Soro, Denmark
8Beekeeping Research Association; in Hungary: National Hungarian Beekeeping Association; in Austria: Biene Österreich; in Portugal: Portoguese Beekeepers Association; in Belgium: Vlaams Bugvodaringscentrum voor Bijen; in Denmark: Deutscher Imkerbund; in Latvia: Latvian Beekeepers Association; in Hungary: National Hungarian Beekeeping Association; in Austria: Biene Österreich; in Portugal: Portuguese Federation of Beekeepers; in Sweden: Swedish Beekeepers Association and Swedish Professional Beekeepers and research institutions (in Denmark: University of Aarhus; in Slovenia: Veterinary Faculty of the University of Ljubljana and the National Veterinary Institute of Slovenia).

The parasitic mite Varroa destructor is a major challenge to beekeeping industry worldwide. Since varroa appearance in Europe, beekeepers rely on the use of synthetic or organic substance for repeated treatment. The effect of using acaricides to control varroa mites has long been a concern to the beekeeping industry due to unintended negative impacts on honey bee health, the increased resistance of mite populations to acaricides, the residues in the bee products and the high costs and labour.

Untreated and survived colonies exist in several countries, some of which have been survived for more than 14 years. Scientists and beekeepers all over the world are working to increase resistance or tolerance to varroa. At the same time efforts are made to find ways to fight varroa mites without the chemical use. Years of experience of particular beekeeping groups showed that the use of chemical treatments can be widely reduced by consequent application of different biotechnical measures.

Our challenges are:
- To find effective ways to fight varroa without the use of chemicals
- To evaluate these methods in correlation with the colony productivity
- To ensure that any alternative is also sustainable
- To increase the use of organic acids instead of synthetic chemicals, if treatment is needed and to promote organic beekeeping

OP-175 [Apitherapy]
Propolis Isolated from Sulawesi Stingless bees have Promising Effects on Rat Endometriosis Model

Muhammad Salih1, Herbert Situmorang2, Dahl Kartika Pratami2
1Research Center for Biomedical Engineering, Faculty of Engineering, Universitas Indonesia, Campus UI Depok, West Java 16425, Indonesia
2Faculty of Medicine, Universitas Indonesia, Campus UI Salemba, Jakarta 10430, Indonesia.

Endometriosis is one of the diseases that impact on women’s quality of life. Chronic inflammation and altered apoptosis activity in ectopic endometrial tissue are two primary pathologies disrupting pelvic organs anatomy and function. Sulawesi Propolis, a native Indonesian natural ingredient, is known for its anti-inflammatory and pro-apoptotic properties. This study aims to investigate the anti-inflammatory and pro-apoptotic activity of Sulawesi Propolis active compounds in rat endometriosis models. The endometriosis lesion model was created in sixty rats by laparotomy. Rats were divided into four groups; negative control (NC), positive control (PC) using dienogest 0.25mg/day, propolis 50mg/kg BW/day (P50), and propolis 100mg/kg BW/day (P100). Each group was treated for a duration of 2, 4, and 6 weeks. After completing treatment, laparotomy was performed to determine endometrial lesion growth, apoptosis markers (Bax, Bcl-2; Bax/Bcl2 ratio, Caspase-3 mRNA expression), and inflammation markers (IL-1β, PGE2 mRNA expression). The most considerable reduction in inflammation activity depicted by IL-1β and PGE2 mRNA expression was shown by the P50-4 group and PC-2 group, respectively. There was no change in the estrous cycle in the administration of 50 and 100 mg/kg BW, within all treatment groups (2, 4, and 6 weeks).

Among all propolis groups, the best overall performance was reported in the administration of 50mg/kg BW for six weeks.
EFFECT OF ANTIOXIDANT-RICH PROPOLIS AND BEE POLLEN EXTRACTS AGAINST D-GLUCOSE INDUCED TYPE 2 DIABETES IN RATS

Badaa Lyounsi, Hassan Laaroussi, Meryem Bakour, Driss Ousaaid, Abderrazak Aboulghazi, Pedro Ferreira Santos Santos, Zlatina Genisheva, Hassan Laaroussi, a Laboratory SNAMOPEQ, University Sidi Mohamed Ben Abdallah, Fez, Morocco

Meryem Bakour a, Laboratory SNAMOPEQ, University Sidi Mohamed Ben Abdallah, Fez, Morocco

Driss Ousaaid a, Laboratory SNAMOPEQ, University Sidi Mohamed Ben Abdallah, Fez, Morocco

Abderrazak Aboulghazi a, Laboratory SNAMOPEQ, University Sidi Mohamed Ben Abdallah, Fez, Morocco

Pedro Ferreira Santos Santos b, Centre of Biological Engineering, University of Minho, Braga, Portugal

Zlatina Genisheva b, Centre of Biological Engineering, University of Minho, Braga, Portugal

Hassan Laaroussi b, Laboratory SNAMOPEQ, University Sidi Mohamed Ben Abdallah, Fez, Morocco

The present study was designed to investigate the preventive effect of propolis, bee pollen and their combination on Type 2 diabetes induced by D-glucose in rats. The study was carried out by feeding daily two concentrations (100 and 200 mg/Kg BW) of propolis or bee pollen (or their combination to normal (non-diabetic) and diabetic rats for a period of 16 weeks. In vivo biochemical changes associated to diabetes are induced by drinking a solution containing 10% of D-glucose (diabetic rats). The in vitro antioxidant activity was also evaluated and the chemical composition of propolis and bee pollen extracts was determined by UPLC-DAD. Phytochemical composition of propolis and bee pollen revealed the presence of several natural antioxidants, such as hydroxychromenes, hydroxybenzoic acids, flavonoids, flavan-3-ols and stilbenes. The major antioxidant compound present in propolis was Naringin (162.85 ± 17.7 mg/Kg). These results have been related with a high antioxidant activity more intense in propolis extract. In rats, the administration of D-glucose had induced hyperglycemia (13.2 ± 0.82 mmol/L), increased plasma insulin levels (25.10 ± 2.12 U/L) and HOMA-IR index (14.72 ± 0.85) accompanied with dyslipidemia, elevation of hepatic enzyme levels, and carbohydrate and energy homeostasis. The coadministration of propolis and bee pollen extracts alone or in combination restored these biochemical parameters and attenuated the deleterious effects of D-glucose on liver and kidney functions. Furthermore, these effects were better attenuated in the combined therapy-prevented diabetic rats. Hence, it is possible to conclude that propolis and bee pollen can be used as a preventive natural product against diabetes induced dyslipidemia and hepato-renal damage.

INVESTIGATION OF DRUG INTERACTION OF PROPOLIS

Ali Senouci a, Ibrahim Kvaraki b, Hasan Hüseyin Oruç b, Gökçen Güvenç Bayram c, Meltem Çaycı d, Zlatina Genisheva2, José Antonio Teixeira2

a Department of Pharmacology and Toxicology, Mişas Veterinary Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey

b Department of Chemistry and Chemical Treatment Technologies, Muğla Vocational School, Muğla Sıtkı Koçman University, Muğla, Turkey

c Department of Physiology, Kızar Veterinary Medicine, Dokuz Eylül University, İzmir, Turkey

Phenolic compounds in foods reveal many biological activities. However, phenolic compounds such as naringin, naringenin, and hesperitin cause drug interactions by affecting Cytochrome P450 (CYP 450) enzymes. CYP 450 enzymes are essential for the metabolism of many medications and most foreign substances. Drug-drug or food interactions occur when two or more drugs or food react with each other. The interactions may cause you to experience an unexpected side effect by changing pharmacokinetic parameters. Propolis is a food potential that can cause possible food-drug interaction by affecting the CYP P450 enzyme due to the phenolic compounds. This study investigated whether or not propolis is affected pharmacokinetically. Enrofloxacin is an antibiotic and metabolized by CYP-450.5 experimental groups were formed in rats as IM Enrofloxacin + oral propolis, IM Enrofloxacin, oral Enrofloxacin + oral propolis, oral Enrofloxacin and control group. Blood samples taken from treated rats at 0, 1/2, 1, 1.5, 2, 4, 6, 8, 12, 18, 24 and 36 hours were analyzed by HPLC-UV. Pharmacokinetic parameters were calculated using plasma density-time values with WinNonlin software. Propolis administration significantly increased the plasma level of IM Enrofloxacin, while oral administration of Enrofloxacin significantly decreased. Significant differences were detected in IM and orally administered Enrofloxacin in T-max, C-max, AUC, and AUMC pharmacokinetic parameters. Propolis almost doubled the T1/2 and C-Max of IM Enrofloxacin but decreased it in oral Enrofloxacin. These results demonstrated the potential of propolis to interact with drugs and alter its pharmacokinetics. The present study indicated that propolis could cause significant health consequences or toxications by causing changes in plasma levels When consumed with medicines that have to be used regularly and narrow therapeutic index drugs.
The beneficial effect of fresh Moroccan bee pollen against blood, liver, and renal toxicity induced by methotrexate in rats

Badiaa Lyoussi1, Asmae Elgouzi2, Hassan Laaroussi1, Meryem Bakour1, Nawal Elijmili1, Abderrazak Aboulghazi1, Driss Oussaid2, Nawal Hams3
1Asmae EL Ghouizi, Laboratory of Physiology-Pharmacology and Environmental Health, SNAMOPEQ, University of Sidi Mohammed Ben Abdellah, Fez, Morocco
2Hassan Laaroussi, Laboratory of Physiology-Pharmacology and Environmental Health, SNAMOPEQ, University of Sidi Mohammed Ben Abdellah, Fez, Morocco
3Meryem Bakour, Laboratory of Physiology-Pharmacology and Environmental Health, SNAMOPEQ, University of Sidi Mohammed Ben Abdellah, Fez, Morocco
4Nawal EL Menjy, Laboratory of Physiology-Pharmacology and Environmental Health, SNAMOPEQ, University of Sidi Mohammed Ben Abdellah, Fez, Morocco
1Abderrazak Aboulghazi, Laboratory of Physiology-Pharmacology and Environmental Health, SNAMOPEQ, University of Sidi Mohammed Ben Abdellah, Fez, Morocco
2Driss Oussaid, Laboratory of Physiology-Pharmacology and Environmental Health, SNAMOPEQ, University of Sidi Mohammed Ben Abdellah, Fez, Morocco
3Nawal Hams, University Hospital Center Hassan II, Fez, Morocco

BACKGROUND: Methotrexate (MTX) is an immunosuppressive drug widely used for the treatment of chronic inflammatory systemic autoimmune disease. Despite the wide range of its therapeutic effects, the effectiveness of MTX remains restricted due to several adverse effects associated with high doses and/or long-term use of this drug. OBJECTIVE: The present study aims to assess the protective effect of the hydro-ethanolic extract of Moroccan fresh bee pollen (BPE) against blood and hepato-renal toxicities induced by methotrexate (MTX) in albino Wistar rats.

MATERIAL-METHODS: UPLC-MS was performed to determine the phenolic profile of bee pollen, mineral content, polyphenols, and flavonoid content were used for its characterization. The antiradical activity was evaluated by the DPPH, ABTS, and FRAP assays. 16 albino Wistar rats were divided into 4 groups: the first group was a control group, the second was injected intraperitoneally with a single dose of MTX (20 mg/kg), the third was a normal group treated orally and daily with BPE (500 mg/kg) only, and the last group was injected intraperitoneally by MTX and then treated orally and daily by EEPF. Whole blood samples were taken for complete blood count (CBC), and serum was collected to assess renal function (urea, uric acid, creatinine, CRP, protein, and albumin) and hepatic biomarkers (ALT, AST, ALDH, and GGT). Lipid markers (TC, TG, HDL, LDL, and MDA) and blood sugar were also assayed. Fresh organs were removed to explore the enzymatic antioxidant status (CAT, GPx, GSH). The rest of the organs were used for the histological sections. RESULTS: The results of this work indicate that MTX injection induced blood, kidney, and liver toxicity characterized by anemia and increased liver enzymes, urea, creatinine, and lipid peroxidation, and decreased CAT, GSH, and GPx levels. Histological examination showed structural impairment and numerous hepatic and renal tissue lesions. However, treatment with BPE reversed these pathological changes by decreasing hepato-renal toxicity markers, correcting resulted anemia, and improved antioxidant status by increasing natural antioxidant enzymes.

CONCLUSION: These findings suggest that BPE alleviated MTX-induced liver, kidney, and blood toxicity by decreasing oxidative stress.

The effectiveness of propolis administration at the level of ring form, trophozoite, schizont, and merozoite parasitemia in mice infected with Plasmodium Berghei

Janice Selamat Hitagul7, Joni Susanto Suasanto5, Kolastika Kalastika Verena6, Derry Aprizan Aprizan7, Endy Jouvannica Pui8
1Department Parasitology Faculty of Medicine Universitas Airlangga Surabaya, Indonesia
2Department Histology Anatomi And Farmacology Faculty of Medicine Universitas Indonesia, Surabaya Indonesia
3Department of Veterinary Faculty of Veterinarian Medicine Universitas Airlangga, Surabaya Indonesia
4Medical Laboratory Technology Department of Health Faculty of Vocational Universitas Airlangga, Surabaya Indonesia

Introduction. Malaria is still a health problem in the world, especially in countries with tropical climates. The challenge above is the emergence of resistance to chloroquine, as a malaria drug. The material used in this research is Propolis. The resin contained in propolis contains flavonoids, phenols, and various forms of acids. One of the phenolic bonds in propolis is Caffeic Acid Phenethyl Ester (CAPE). CAPE is the active side of flavonoids which have antibacterial, antifungal, antiviral, anti-inflammatory, and anti-migratory properties. Propolis as a honey bee product also contains lutetin 7, 8 dihydroxy and chalone. Luteolin 7-glycoside inhibits type 2 and parastic fatty acid biosynthesis and chalcone can inhibit hemolysis. This study used the analytical description method, One Way Anova to calculate parasitemia of parasites in red blood cells in the form of ring form, trophozoite, schizont, and merozoite stages. 30 samples of mice infected with “Plasmodium berghei” were divided into 5 groups. A control group without propolis administration, group B given a single dose of propolis 100 mg/kg bw, group C given a single dose of propolis 150 mg/kg bw, group D given a single dose of propolis 200 mg/kg bw, group E was given a single dose of 250 mg/kg body weight of propolis. Giving propolis started on the second day. The results showed that the description of erythrocytes treated with a single dose of each from groups A, B, C, D and E was different. The highest parasitemia value was found on day 8 with a dose of 200 mg/kg bw which had an average value of 115 infected erythrocytes. Meanwhile, for a dose of 250 mg on days 2, 3, 6, 8, 9, and 10, there were no erythrocytes infected with “Plasmodium berghei”. It was concluded that the peak phase was at the ring stage with a percentage of 97% while the schizont stage was 2.8% and gametocytes were 0.2% on day 8. In this discussion, East Java Propolis was found to be antimalarial depending on the dose and time of administration.

The effect of propolis extracts for neurodegenerative disease and its molecular mechanism

Sung Suk Kim, Hyo Young Kim, Se Gun Kim, Sang Mi Han, Sik Ryu, Soon Ok Woo
Division of apiculture, Rural development administration

Propolis is a typical beekeeping product produced by bees by mixing exudates collected from plant tissues with their own saliva. Bees use propolis to protect their hives from insects and microorganisms. Propolis has excellent therapeutic properties and has been widely used as a “natural remedy” from ancient to recent century. Alzheimer’s and Parkinson’s disease are typical degenerative neurological diseases and are known as serious diseases in human society. Alzheimer’s disease is mainly caused by recognition dysfunction due to atrophy of the brain, and Parkinson’s disease is mainly caused by decreased dopamine secretion due to abnormal accumulation of alpha-synuclein protein known as formation of Lewy body and muscle degeneration. There are many possible causes for such neurodegenerative diseases, one of which is abnormal expression of intracellular proteins caused by endoplasmic reticulum stress and overexpression and aggregation of proteins. The components that impart functional properties to propolis are the abundance of plant biodiversity in the region where propolis raw materials are collected. Among them, the most functional components of propolis are flavonoids and polyphenols, which are used for various purposes, including immune regulation, antibacterial, anti-inflammatory, anti-tumor, and antioxidant effects due to their potential pharmaceutical properties. However, the molecular biological mechanisms of propolis on neurodegenerative diseases have not yet been fully identified.

Therefore, in this study, we investigated the effect of propolis on neurodegenerative diseases using PC12 and SH-SY5Y cell line. Propolis inhibits the phosphorylation of tau, a major protein marker for Alzheimer’s disease. In addition, propolis inhibits endoplasmic reticulum stress-mediated microtubule disassembly and inhibiting apoptosis. In Parkinson’s disease, propolis suppresses overexpression of -synuclein by inhibiting endoplasmic reticulum stress and overexpression and aggregation of proteins. The components that impart functional properties to propolis are the abundance of plant biodiversity in the region where propolis raw materials are collected. Among them, the most functional components of propolis are flavonoids and polyphenols, which are used for various purposes, including immune regulation, antibacterial, anti-inflammatory, anti-tumor, and antioxidant effects due to their potential pharmaceutical properties. However, the molecular biological mechanisms of propolis on neurodegenerative diseases have not yet been fully identified.
Relationships between Bee Pollen Biochemical Properties and Chronic Immobilization Stress in Rats

Ozlem Saral1, Hüseyin Sahin2, Sinan Saral1, Mehmet Alkanlar1, Kerim Ali Akyildız2, Atila Topcu2, Adnan Yilmaz2
1Department of Nutrition and Dietetics, Faculty of Health Science, Recep Tayyip Erdogan University, Rize, Turkey.
2Espy Vocational School, Giresun University, Espyie, Giresun.
3Department of Physiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey.
4Department of Medical Services and Techniques, School of Health Care Services Vocational, Recep Tayyip Erdogan University, Rize, Turkey.
5Department of Medical Pharmacology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey.
6Department of Medical Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey.

In addition to anxiety, depression, and cognitive impairment are all possible consequences of chronic stress. Bee pollen offers a wide range of medicinal properties because it is well-known as a potent source of bioactive compounds. On the basis of this information, we explored the association between the use of bee pollen and the treatment of depression and anxiety, both of which are neurological problems. After taking approval from the Local Ethics Committee of Recep Tayyip Erdogan University with the number 2020/23, twenty-four male Sprague Dawley rats were divided into three groups for this study: the control group, the stress group, and the bee pollen+stress group. During a ten-day period, rats that had been exposed to physical stress received 200 mg/kg/day of bee pollen. Before euthanizing the rats, open field tests (OFTs) and forced swimming tests (FSTs) were administered to observe behavioral changes. The levels of brain-derived neurotrophic factor (BDNF), interleukin 1 beta (IL-1), tumor necrosis factor-alpha (TNF-α), malondialdehyde (MDA), and glutathione were determined in the brain tissue. According to the findings of the behavioral tests, bee pollen was shown to lower anxiety-like behavior but had no effect on depression-like behavior. As a result of the data of the biochemical analysis, it was found that bee pollen suppress neuroinflammation in hippocampal tissues, while simultaneously lowering oxidative stress and lipid peroxidation. Accordingly, we think that Anatolian bee pollen may be a promising therapeutic agent in the prevention or mitigation of stress-related behavioral deficits. The findings of our preclinical research have been published with the DOI number 10.1016/j.neulet.2021.136342 in Neuroscience Letters.

Acknowledgements
The authors are thankful to Bee&You (Bee’O®) (Beb&You, Bee’O Propolis) Research and Development Center, İstanbul, Turkey for providing Anatolian bee pollen sample.

The pharmacological effect of propolis against many viral infections has been revealed. Used for medicinal purposes since ancient times, propolis has more recently been shown to have broad-spectrum antimicrobial activity, including activity against opportunistic pathogens associated with acquired immunodeficiency syndrome (AIDS), but the source/compounds of this activity have not been clarified. Inhibitors used for the treatment of HIV virus cannot be used effectively enough. This increases the need for new inhibitors.

In the research, it was determined that the aqueous propolis extract inhibited the HIV reverse transcriptase activity, which plays a key role in the replication mechanism of the HIV virus and is responsible for the conversion of single-stranded virus RNA into double-stranded DNA. In this study, unlike the literature, the pharmacological activity of the aqueous extracts of propolis samples taken from Turkey was determined. It was investigated whether 18 phenolic compounds in 2 kDa fractions and therefore less than 2 kDa inhibit HIV-1 RT enzyme by ELISA method. IC50 values of 18 phenolic compounds were determined by ELISA method. The IC50 values of 9 phenolic compounds were found to be less than 1 mM. The IC50 values of these compounds, Luteolin, Quercetin, Fisetin, Tannic acid, Pinocembrin, Myrcetin, were 0.11; 0.41; 0.92; 0.58; 0.023 and 0.09 mM. The inhibition properties of 6 phenolic compounds with IC50 value less than 1 mM, binary and 6-fold combinations of KDW value were measured; it was determined that most of the combinations showed a synergistic effect, especially the 6-way combination was equivalent to Nevirapine used in the treatment of AIDS today. At the stage of the research findings, in vivo, animal trials, pre-tests Clinical and clinical studies are needed to be conducted to determine whether, Fisetin, Tannic acid, Pinocembrin and Myrcetin and their combinations in propolis, is a natural bee product and widely used in the public, can be used in the treatment of AIDS patients. Luteolin, which is in the context of widely used propolis, can be suggested as the first candidate for in vivo study as a possible drug candidate because of the low IC50 and high Si (selective index).

Anti-Quorum Sensing, Anti-biofilm and Anti-swarming Activities of Anatolia Propolis Extracts

Sevap Kocak, Ulku Zeynep Ureyen Esereta, Ali Osman Kılıç, Yakup Kara, Aslı Eif Tanjuğur Samancı
Black Sea University
Bee&You, Bee’O (Propolis) Research and Development Center, İstanbul, Turkey

Propolis is one of the natural products with the highest antimicrobial activity. This bee product contains various polyphenols, and volatile oils have wide biological active properties is frequently used in complementary medicine. Raw propolis is usually dissolved in 65-70% ethanol and used in complementary agent. In this study, the antimicrobial activity of ethanolic commercial propolis was investigated. The aim of this study is will propolis be a cause for increasing antibiotic resistance? Antibiotic resistance, which has increased rapidly and poses a great threat to public health. The inadequacy of existing antibiotics has increased the need for new effective and less toxic antibiotic raw materials or antibiotic derivatives. The antimicrobial activity of a commercially produced ethanolic propolis extract has been extensively studied. Antimicrobial activity was investigated against Staphylococcus aureus, Mycobacterium smegmatis, Chromo bacterium violaceum and Mycobacterium tuberculosis. The IC50 values of 9 phenolic compounds were found to be less than 1 mM. The IC50 values of these compounds, Luteolin, Quercetin, Fisetin, Tannic acid, Pinocembrin and Myrcetin, were 0.11; 0.41; 0.92; 0.58; 0.023 and 0.09 mM. The inhibition properties of 6 phenolic compounds with IC50 value less than 1 mM, binary and 6-fold combinations of KDW value were measured; it was determined that most of the combinations showed a synergistic effect, especially the 6-way combination was equivalent to Nevirapine used in the treatment of AIDS today. At the stage of the research findings, in vivo, animal trials, pre-tests Clinical and clinical studies are needed to be conducted to determine whether, Fisetin, Tannic acid, Pinocembrin and Myrcetin and their combinations in propolis, is a natural bee product and widely used in the public, can be used in the treatment of AIDS patients. Luteolin, which is in the context of widely used propolis, can be suggested as the first candidate for in vivo study as a possible drug candidate because of the low IC50 and high Si (selective index).

The Investigation of The Effects of Nourishment With Drone Bee Larvae (Apilarnil) On The Reproductive Performance and Body Composition of Blue Streak Hap Broodstocks (Labidochromis caeruleus Fryer, 1956)

Pinar Sahin1, Ebru Yilmaz1
1Agriculture Research Institute, Ordu, Türkiye
Faculty of Marine Sciences, Ordu University, Ordu, Türkiye

In the present study, the effects of nourishment with apilarnil on the reproductive performance and body composition of blue streak hap broodstocks (Labidochromis caeruleus Fryer, 1956) were examined. In the first part (30 days) of the study, female and male fish of which average live weight was 3.82±0.05 g were put into aquariums separately. 1st and 2nd groups (KD and KE) were fed with dry fodder as three times a day during the experiment. 3rd and 4th groups (AD and AE) were fed by the second part of the experiment by being fed with drone bee larvae (apilarnil) as the 3rd meal accompanied by two dry fodder meals. In the second part (60 days), the groups were formed by putting the male and female fish together as KD+KE, KD+AE, AD+KE, and AD+AE. In this process, all of the groups were fed only one meal a day. At the end of the 1st and 2nd parts, the difference between all of the groups in terms of weight and length was not statistically significant (p>0.05). After the second part, the eggs (Y) that were taken with vomiting method in every 15 days, observed egg (GY), food-sac larva (BKL), and fry (YA) were classified under these 4 categories and counting was performed according to these categories. According to the reproductive performance results, while the KD+KE group was the first group when the total number of living creatures was examined, AD+AE (125), AD+KE (110) and KD+KE (75) groups followed this group respectively. While there wasn’t a difference between the groups in terms of humid and protein from the body composition of the fish, it was determined that the difference of ash value at the start of the experiment and the ash values between the KD+KE and AD+AE groups were significant (p<0.05). While the highest fat ratio was observed in the KD+KE group, a statistically significant difference was determined between the beginning of the experiment and the AD+AE group.
Morphometric Characterization of Bee Races Apis mellifera L. from Different Regions of Turkey and Their Venom Potential for Apitherapy According to Geographical Differences

Ekin Vardel1, Dilay Çağlar1, Ayşe Nalbantoğlu1, Banu Yücel1
1Department of Animal Science, Faculty of Agriculture, Ege University, Turkey
2Department of Bioengineering, Faculty of Engineering, Ege University, Turkey

Bee venom is one of the most important bee products used in apitherapy. Besides market of bee venom is not yet sustainable. Studies in recent years draw attention to the difference in the amount of bee venom collected from different regions in different seasons. Considering the geographical structure and flora diversity of Turkey, it is clear that environmental conditions will have a significant impact on the amount and quality of bee venom in different geographical conditions. For this reason, this study will provide basic information for obtaining data on a regional basis, standardizing bee venom and making it an apiceutical product at an advanced stage. In the present study, 58 bee samples were collected from 43 provinces and almost all over Turkey. The samples were kept in absolute ethanol. Additionally, venom samples were collected with electroschock method. Venoms obtained after drying on the glass surface of venom collector by scraping. All samples lyophilized and stored in dry condition at +4 °C in amber bottles. The samples taken from the front wing of the worker bees collected from 58 apiaries transferred to the computer by using the geometric morphometry method, the landmarks marked and analyzed. The venom samples of the determined races and ectype compared with biochemical analyzes, in this way national honeybee venom profile tried to be defined. Venom protein content was determined by BCA protein assay. A panel of cancerous (pancreas, colon, glioblastoma, cervix, breast, lung, prostate) and non-cancerous cells (healthy lung fibroblast cells) were screened for cytotoxic potential by MTT assay in order to carry out apitherapeutic application. The protein content was estimated from 378.30 ± 63.78 µg/ml to 1128 ± 96.16 µg/ml. The IC50 values of the cells that are treated with the venoms varied between 1.52 ± 0.52 µg/ml and 114.35 ± 6.01. To our knowledge, this is the first extensive assay. A panel of cancerous (pancreas, colon, glioblastoma, cervix, breast, lung, prostate) and non-cancerous cells (healthy lung fibroblast cells) were screened for cytotoxic potential by MTT assay in order to carry out apitherapeutic application. These results indicate that venoms of the bees from Turkey show great potential for apitherapeutic applications. It is suggested that further studies on venom are needed using varying doses and duration of treatment including other variables associated with male infertility.

Analysis of the Effects of Propolis on Male Infertility Based on Sperm Count Using Experimental Animals

Masliah Mafuchati
DEPARTEMENT OF ANATOMY VETERINER, ARLANGGA UNIVERSITY, SURABAYA, INDONESIA

Background of the problem
Infertility is defined as the failure to conceive within a period of time. One of the causes of infertility in men is oxidative stress, which will affect the fertility status of men. Oxidative stress itself is influenced by the number of pro-oxidants or free radicals, most of which are destructive reactive oxygen species (ROS), which exceed the body’s natural antioxidants. Propolis is believed to function as an antioxidant that can suppress the number of free radicals in the body and also has a protective function against male infertility.

Research purposes
The purpose of this study was to analyze the effect of propolis ethanol extract on sperm count of male mice (Mus musculus) with infertility models.

Research Methods
This study is an experimental laboratory study with the post test only control group design using 28 male mice which were divided into 4 groups. Spermatoza count using a neubauer haemocytometer, viewed through a microscope with a magnification of 10 x 40 in five fields of view. The research data were analyzed using the One-Way ANOVA test.

Result
Spermatoza count (Mean + Standard Deviation) for each group K1 2,921,429 ± 690,927 /ml, K2 2,021,428 ± 501,561 /ml, K3 5,342,857 ± 2,523,791 /ml, and K4 5,371,428 ± 554,419 /ml. OneWay ANOVA test showed p value < 0.001, indicating that there was an effect of giving Propolis on the sperm count of mice with male infertility models.

Conclusion
The results of the research that have been carried out by the authors indicate that there is an effect of giving propolis a dose of 50 mg/kgBW/day on the spermatoza count of male infertility models of mice. The propolis dose of 100mg/kgBW propolis used did not give a significant increase in effect when compared to the dose of 50mg/kgBW propolis. Further studies are needed using varying doses and duration of treatment including other variables associated with male infertility.

Analysis of the Effects of Propolis on Male Infertility Based on Sperm Count Using Experimental Animals

Masliah Mafuchati
DEPARTEMENT OF ANATOMY VETERINER, ARLANGGA UNIVERSITY, SURABAYA, INDONESIA

Background of the problem
Infertility is defined as the failure to conceive within a period of time. One of the causes of infertility in men is oxidative stress, which will affect the fertility status of men. Oxidative stress itself is influenced by the number of pro-oxidants or free radicals, most of which are destructive reactive oxygen species (ROS), which exceed the body’s natural antioxidants. Propolis is believed to function as an antioxidant that can suppress the number of free radicals in the body and also has a protective function against male infertility.

Research purposes
The purpose of this study was to analyze the effect of propolis ethanol extract on sperm count of male mice (Mus musculus) with infertility models.

Research Methods
This study is an experimental laboratory study with the post test only control group design using 28 male mice which were divided into 4 groups. Spermatoza count using a neubauer haemocytometer, viewed through a microscope with a magnification of 10 x 40 in five fields of view. The research data were analyzed using the One-Way ANOVA test.

Result
Spermatoza count (Mean + Standard Deviation) for each group K1 2,921,429 ± 690,927 /ml, K2 2,021,428 ± 501,561 /ml, K3 5,342,857 ± 2,523,791 /ml, and K4 5,371,428 ± 554,419 /ml. OneWay ANOVA test showed p value < 0.001, indicating that there was an effect of giving Propolis on the sperm count of mice with male infertility models.

Conclusion
The results of the research that have been carried out by the authors indicate that there is an effect of giving propolis a dose of 50 mg/kgBW/day on the spermatoza count of male infertility models of mice. The propolis dose of 100mg/kgBW propolis used did not give a significant increase in effect when compared to the dose of 50mg/kgBW propolis. Further studies are needed using varying doses and duration of treatment including other variables associated with male infertility.
Determination of physicochemical properties of naturally obtained bee venoms from anatolian honeybee (Apis mellifera anatoliaca)

Aslı Elif Tanuğur Samancı¹, Meral Kekeçoğlu², Taylan Samancı¹
¹SBS Bilimsel Bio Çözümler R&D Center, İstanbul, Turkey
²Department of Biology, Düzce University, Düzce, Turkey

Bee venom is a pharmacologically relevant bee product. There are numerous studies on the determination of its physical properties and characterization of the chemical components of bee venom. However, there is no information available on the characterization and standardization of bee venom contents obtained from the Anatolian honey bee. Therefore, this study represents the first data about Anatolian bee venom according to our knowledge. This study exhibits a comparison of the chemical contents of two types of samples; fresh bee venoms obtained from the Anatolian honey bees and the commercial bee venoms. Three bee venom samples were collected from beekeepers in Denizli, Malatya, and Manisa, and two commercially available samples imported from China and Bulgaria were purchased. The moisture content and sugar profiles of the samples were determined using a moisture analyzer and HPLC-RID. Melittin, apamin, and phospholipase A2 contents were analyzed by HPLC-UV method. The results showed significant differences in the chemical contents of two types of samples. Commercial samples were found to contain lower amounts of apamin and melittin in the range of 0.91-1.60% and 18.76-25.35%, respectively. On the other hand, the Anatolian samples showed higher amounts of apamine and melittin in the range of 2.09-2.63% and 36.95% -43.51%, respectively. Similarly, bee venom phospholipase A2 activity was found to be higher in samples produced by beekeepers in Turkey than that of commercial samples. In local bee venom samples, phospholipase activity was in the range of 10.52-11.00%, but 6.90-9.08% in imported samples. The phospholipase A2 activities of the bee venom samples produced in Turkey were found to be significantly higher. Also, the moisture contents averaged 11.81% and 9.64% in imported samples and bee venom samples of Anatolian bees, respectively. Sugar profiles of the samples showed no significant difference in samples except that the sucrose content was higher in samples produced by the beekeepers in Turkey.

Investigation of nutritional and antioxidant properties of Anatolian bee bread

Aslı Elif Tanuğur Samancı¹, Mehmet Beykaya², Taylan Samancı¹, Elif Yorulmaz Önder¹, Emine Merve Uzun¹, Fatih Tosun³
¹SBS Bilimsel Bio Çözümler R&D Center, İstanbul, Turkey
²Department of Veterinary, Ankara Yıldırım Beyazıt University, Ankara, Turkey
³Republic of Turkish Ministry of Agriculture and Forestry, Ankara, Turkey

Bee bread is a bee product produced by bees in which they combine pollen with their digestive enzymes and place them in the comb cells. In this study, it was aimed to evaluate the nutritional and antioxidant properties of Anatolian bee bread and present an examination of regional differences. In order to emphasize the bioavailability of bee bread and to determine its phenolic, flavonoid content, antioxidant activity and nutritional quality, ten samples were collected from different parts of Anatolia. Seven of them were from Muğla (prominent city in terms of honey production), one was from Van representing the Eastern Anatolia region, one was from Sivas representing the Central Anatolia region and one was from Kırşehir. Ten samples were analyzed for total phenolic, flavonoid, antioxidant and moisture content, and the mixture representing ten samples were analyzed for nutritional content (carbohydrate, fat, saturated fat, fiber, protein, salt, ash, iron and zinc). Total phenolic content, flavonoid content and moisture content of the samples were determined as 11.90-14.77 mg GAE/g, 1.30-6.30 mg CE/g, 20.03-35.43 mg TEAC/g and 10.13–18.10%, respectively. The highest phenolic, flavonoid and antioxidant content was observed in Muğla samples. The study’s results were compared to results found in literature, and it was concluded that Anatolian bee bread has high antioxidant content and nutritional value, especially, in terms of carbohydrates, iron and zinc.
Presence in the hive and consumption of syrup and pollen cake increases the amount of minerals in the produced honey. To increase the space of the hive, frames with pupae and larvae were changed with the empty ones. Moreover, to look for nectar in the desert. As well as, to reduce the rate of bee exit from the hive, a special type of hive was used.

Honey is one of the foods that are 100% absorbed by the body metabolism, so the minerals in it are better available for the body and will be better absorbed. Clinical research has also shown that the human body will absorb higher minerals by consuming natural foods containing minerals than by taking supplements and pills. Therefore, minerals enriched honey will be very important for those who are deficient in them. In this work, using techniques available in bee feeding and using minerals enriched honey, will produce, which will lead to a very high absorption of minerals by the body. In the present study, on medicinal plants, bees will be fed with minerals as a supplement. To feed, natural honey syrup/cake with a specified dose of minerals is used, also in order to get a better result from feeding, a special bee breed (Karanka) has been used, because this breed is more interested to be in the hive and use honey syrup and pollen cake than to look for food in the desert. As well as, to reduce the rate of bee exit from the hive, a special type of hive was used (open floor) and to increase the space of the hive, frames with pupae and larvae were changed with the empty ones. More presence in the hive and consumption of syrup and pollen cake increases the amount of minerals in the produced honey and the results show that the minerals (Iron and Calcium) enhanced twice in comparison with the common productions.

Production of minerals enriched honey

Abed Vahidi1, Abed Vahidi2, Zeinab Sajjadi2

Islamic Azad University, Alisabat katoji, Iran
North Khorasan Tikan Shahid Company, Bojnord, Iran

Honey is one that is 100% absorbed by the body metabolism, so the minerals in it are better available for the body and will be better absorbed. Clinical research has also shown that the human body will absorb higher minerals by consuming natural foods containing minerals than by taking supplements and pills. Therefore, minerals enriched honey will be very important for those who are deficient in them. In this work, using techniques available in bee feeding and using minerals enriched honey, will produce, which will lead to a very high absorption of minerals by the body. In the present study, on medicinal plants, bees will be fed with minerals as a supplement. To feed, natural honey syrup/cake with a specified dose of minerals is used, also in order to get a better result from feeding, a special bee breed (Karanka) has been used, because this breed is more interested to be in the hive and use honey syrup and pollen cake than to look for food in the desert. As well as, to reduce the rate of bee exit from the hive, a special type of hive was used (open floor) and to increase the space of the hive, frames with pupae and larvae were changed with the empty ones. More presence in the hive and consumption of syrup and pollen cake increases the amount of minerals in the produced honey and the results show that the minerals (Iron and Calcium) enhanced twice in comparison with the common productions.

Investigation of potential properties of ethanolic propolis extracts for COVID-19 treatment

Oktay Yıldız1, Halil İbrahim Guler2, Gizem Tatık4, Ali Osman Beşduz1, Sevgi Kolaylı1
Karadeniz Technical University, Pharmacy Faculty, Department of Biochemistry
Karadeniz Technical University, Pharmacy Faculty of Science, Department of Chemistry
Karadeniz Technical University, Faculty of Science, Department of Biology
Karadeniz Technical University, Faculty of Medicine, Department of Biostatistics and Medical Informatics
Karadeniz Technical University, Faculty of Science, Department of Molecular Biology and Genetics

The aim of the study is to investigate the potential of ethanolic propolis extracts to bind to ACE-II receptors and compare with classical ACE-II inhibitors. For this reason, the study is based on Anatolian propolis composition which is analysed by HPLC-UV and to calculate in silico ACE-II binding constants of some flavonoids present in the propolis extract. In this molecular docking study, interactions for ACE-II (L-2-1-carboxy-2-(3,5-dichloro-benzyl)-3h-imidazole-4-Yl)-ethylamino-4-methyl-1-carboxy-2-

Carrageenan-induced hind paw edema model in mice was used to assess the anti-inflammatory activity of honey from the Philippine stingless bees (Tetragonula biroiei). Intraperitoneal injection of the phlogistic agent, carrageenan, into the hind paw of ICR mice induced inflammation evidenced by hyperemia and swelling. Oral pre-treatment of Philippine stingless bee (PSB) honey significantly attenuated gross hind paw edema at 6 hours and was sustained up until 24 hours after induction of inflammation. Microscopically, significantly reduced dermal edema and dermal thickness were observed in PSB honey pre-treated mice. These gross and microscopic improvements were comparable to those seen in positive control diclofenac sodium (DS) pre-treated mice. Similarly, DS and PSB honey pre-treated mice had comparably reduced plasma pro-inflammatory cytokine levels relative to distilled water (DW) pre-treated mice. Philippine stingless bee honey pre-treated mice had 38.46%, 36.75% and 63.38% lower levels of plasma (L-1), IL-6 and tumor necrosis factor (TNF-), respectively, compared to those measured in DW pre-treated mice. These results indicate that the Philippines stingless bees (T. biroiei) honey possesses strong anti-inflammatory activity through inhibition of L-1, IL-6 and TNF- sufficient to substantially attenuate hind paw inflammation in mice. The findings exhibit the potential development of these indigenous bee-derived substances as new biomedical products for the treatment of acute inflammatory conditions.
Changes in antioxidant capacity and exin layer of pollen fermented with kombucha and green tea

Sibel Siliçi1, Hanun Kuleşçi2
1Erciyes University
2Biohayat Saglik Urunleri Ltd

Bee pollen is an important bee product that honey bees use to feed their young larvae. After the bee pollen is brought to the hive and stored in the honeycomb cells, it undergoes lactic acid fermentation and is made ready for feeding. The exine layer of the pollen is resistant to high temperatures and pressure. It is known that fermentation causes breaks in the exine layer of pollen and the nutrient content of the pollen comes out. Therefore, in this study, it was aimed to determine the changes in the antioxidant capacity of pollen fermented with different products in the laboratory environment and the changes in the exine layer. For this, green tea infusion (7%) and hibiscus tea infusion (0.5%) were prepared in boiled water and sugar and pollen were added to the pollen fermentation at 28°C. Antioxidant activity was determined by the phosphomolybdenum method by taking samples at different time intervals (0, 1, 3, 5, 7, 9 days) and the exine structure of pollen was examined by electron microscopy. The antioxidant activity of the control, green tea and hibiscus group samples was determined between 31.15-57.07, 35.90-113.50 and 12.25-42.66 mgAAG/g, and a significant increase in antioxidant activity was observed in the green tea group. As a result of fermentation with green tea and hibiscus, it was determined that there were breaks in the exin structure. These results showed that the fermentation of pollen with green tea can be a good option to obtain fermented products.

Apitherapy in Lithuania: past, present and future perspectives

Neringa Sutkevičienė1, Povilas Rimkus2, Povilas Kalesinskas3, Sonata Trumbeckaitė4
1Lithuanian University of Health Sciences, Veterinary Academy, Kaunas, Lithuania; Board member of Lithuanian Apitherapy Association
2President of the Lithuanian Apitherapy Association
3Board member of Lithuanian Apitherapy Association
4Lithuanian University of Health Sciences, Medicine Academy, Kaunas, Lithuania; Vice-president of the Lithuanian Apitherapy Association

The beginning of apitherapy in Lithuania dates back to year 1962 when prof. A. Lukoševičiūtė and assoc. prof. A. Eviltis started studying the effects of fresh royal jelly in patients suffering from heart diseases at Kaunas Clinics. Production of ethanol extract of propolis and royal jelly tablets was started at Kaunas Pharmaceutical Factory “Sanitas” in 1966. The first Lithuanian bee venom ointment “Apisit” was developed in 1967. Research work of propolis was started in 1971 by then pharmacist A. Gendris defended his dissertation on the research of eye drops for industrial production in 1974. In 1975 M.D. doctor L. Mackevičius was the first in Lithuania to use bee venom (stings) for treatment and developed an original device for this purpose. Finally, Lithuanian Apitherapy Association was founded in 1991. Today a lot of medics, biologists, scientists, veterinarians etc. carry out research with bee products in various fields. Lithuanian Apitherapy Association also belongs to the International Federation of Apitherapy (IFA) that was established in Passau City in 2012. By the way in 2016 the second IFA Congress was held in Kaunas, Lithuania.

Apitherapy is one of the offshoot of Complementary and alternative medicine. For a long time apitherapy has not been regimented in Lithuania and finally after the activity and a lot of preparatory work of Lithuanian apitherapists on 14-Jan-2020 the law on complementary and alternative healthcare (CAHC) of the republic Lithuania was adopted. Apitherapy is the one of 15 specific services classified as CAHC in this law such as hypotheraphy, phyotherapy, hirudotherapy etc. Qualification requirements for a person seeking a licence as a specialist in CAHC apitherapy are specified. Two types of specialists could be treated regardless of their age and problems. Here, too, scientific measurements show excellent results with the improvement of stress and the human metabolism. They are addressed to patients and caregivers.

Gentle beekeeping and bee apitherapy a holistic health method that is the result of 40 years of research and has proven its effectiveness on human health

Catherine Flurin
Apitherapist, Researcher, Beekeeper and Founder of Ballot-Flurin Company

Gentle beekeeping is a method and a set of specifications that optimize the production of propolis, honey and wax for human health. The techniques of gentle beekeeping amplify the content of active ingredients and the number of measurable photons in the apitherapy products. These measurements are performed by recognized laboratories. Catherine Ballot-Flurin, apitherapist, researcher who has devoted her whole life to bees and health, has developed techniques for harvesting and preparing propolis, honey and all the products of the hive for a perfect efficiency. And especially allowing the respect of the bees which are sacred and are the future for the health of the humans. The hive of soft beekeeping is made of polarized wood without plastic. The venom is harvested without killing or stressing the bees. Photos of these devices will be shown.

We also treat by the presence of bees with new devices like polarized bee chambers, specific skin care through direct contact with bees. These care devices are intended for hospitals, medical practices and wellness centers. Children and adults can be treated regardless of their age and problems. Here, too, scientific measurements show excellent results with the improvement of stress and the human metabolism. They are addressed to patients and caregivers.

Catherine Flurin’s experience is offered to all those who want to move from classical apitherapy which considers bees as simple production animals to a conscious apithrapy which is much more efficient because it brings the true vibratory signal of bees for holistic health.

Effect of Anatolian Propolis on COVID-19

Adı Elif Tanuğur Samancı, Taylan Samancı, Reşat Kübiliyı İrkan, Elif Yorulmaz Önder
BeexYou / Beex Research Center, SİBS Bilimsel Bio Cazemier, İstanbul, Turkey

The virus which emerged with respiratory symptoms such as fever, cough and shortness of breath in China at the end of December 2019, named as COVID-19, caused a pandemic and continues to affect the whole world with its new variants. There has been a significant increase in the mortality of COVID-19 on the elderly and those with chronic disease comorbidities. Therefore, it is significant to strengthen the immune system to get protected from COVID-19 and to minimize symptoms. Propolis is a natural bee product with numerous studies showing its positive effects on immunomodulatory activity and on the COVID-19 disease severity and transmission. Inhibitory effects of caffeic acid phenethyl ester, hesperitin, caffeic acid, quercetin, pinosembrin, galangin flavonoids found naturally in Anatolian Propolis have been shown in molecular modeling for the binding of SARS-CoV-2 to the ACE-2 receptor. The binding of viruses was blocked; thus, development of infection was inhibited. In the first COVID-19 case report, use of Anatolian propolis in the treatment of a 38-year-old patient with a positive corona test were reported. Daily consumption of 20-80 drops of Anatolian Propolis as a support to existing medical treatment reported to provide relief in breathing on the third day. On the 7th day, the patient was transferred from intensive care unit. The first control of patient after treatment for 10 days in normal service unit with Anatolian propolis support showed that there was significant healing. On the 15th day, it was reported that his lungs were completely healed. The first clinical study evaluating effects on healthcare workers with prophylactic purpose against COVID-19 was carried out with Anatolian propolis. In the study with 204 healthcare professionals, in group of 102 participants consuming Anatolian Propolis (30%), only 2 participants were found to be positive, while there were 14 people with PCR positivity in the control group of 102 people. In result, 98% of individuals who took Anatolian Propolis were protected against COVID-19 compared to the control group. In conclusion, consumption of pure Anatolian propolis containing at least 20% extract, at least 80 drops per day for adults is recommended to get protected from COVID-19.
Acute inflammation attenuated by topical administration of Philippine stingless bee propolis through reduction of the pro-inflammatory cytokines, Tumor Necrosis Factor-alpha (TNFa), Interleukin 1 (IL-1), and Interleukin 6 (IL-6)

Maria Amelia Celine Estacio1, Trevor Alvan Tan Lim2, Alexandra Marie L. Labadan2, Mark Joseph Maranan Desamero2, Roxanne Posilio Gapa1n3, Jussiaca Valente Baru1an1, Mary Jasmin Cabillon Ang1, Cleofas Rodriguez Cervancia3, Therese Marie Avena Collantes4
1Department of Basic Veterinary Sciences, College of Veterinary Medicine, University of the Philippines Los Banos; University of the Philippines Los Baños Bee Program
2Department of Basic Veterinary Sciences, College of Veterinary Medicine, University of the Philippines Los Banos; University of the Philippines Los Baños Bee Program
3Department of Veterinary Paracutical Sciences, College of Veterinary Medicine, University of the Philippines Los Banos; University of the Philippines Los Baños Bee Program
4University of the Philippines Los Banos Bee Program

The anti-inflammatory activity of topically applied propolis from the Philippine stingless bees (Tetragonula biroi Freise) was investigated when the carrageenan-induced hind paw edema inflammatory model. Intraplantar injection of carrageenan in mice induced severe swelling and hyperemia of the right hind paw starting at 15 minutes post-injection in the different treatment groups. Repeated topical administration of diclofenac sodium and propolis every 8 hours for 24 hours significantly reduced edema grossly at 6-24 hours and 3-24 hours post-injection of the inflammatory agent, respectively. Plasma tumor necrosis factor (TNF-α), interleukin 1B (IL-1B) and IL-6 levels were then measured after the 24-hour observation period. Both propolis and diclofenac sodium were found to significantly reduce plasma TNF-α, IL-1B and IL-6 levels. These results show that the anti-inflammatory activity of stingless bee propolis can be attributed to its ability to down-regulate pro-inflammatory cytokines such as TNF-α, IL-1B and IL-6. Altogether, it strengthens the potential development of these bee-derived substances as new biomedical product for the treatment of acute inflammatory conditions.

PP-031 [Aphitherapy]

Anti-nociceptive activity of Philippine stingless bee (Tetragonula biroi Freise) honey: Alleviation of neurogenic and inflammatory somatic pain but not cutaneous and visceral pain

Jussiaca Valente Baru1n3, Kimberly P. Occidental2, Therese Marie Avena Collantes4, Roxanne Posilio Gapa1n3, Mark Joseph Maranan Desamero2, Mary Jasmin Cabillon Ang1, Cleofas Rodriguez Cervancia3, Maria Amelia Celine Estacio1
1Department of Basic Veterinary Sciences, College of Veterinary Medicine, University of the Philippines Los Banos; University of the Philippines Los Baños Bee Program
2Department of Basic Veterinary Sciences, College of Veterinary Medicine, University of the Philippines Los Banos; University of the Philippines Los Baños Bee Program
3Department of Veterinary Paracutical Sciences, College of Veterinary Medicine, University of the Philippines Los Banos; University of the Philippines Los Baños Bee Program

The Philippine stingless bee (Tetragonula biroi Freise) honey was examined for its potential anti-nociceptive or anti-pain property against inflammatory somatic, visceral pain, and cutaneous pain in using sexually mature male ICR mice. Pre-emptive oral administration of honey at 500 mg/kg body weight induced significant anti-nociception on the formalin test which was evidently seen as reduced pain responses of licking and biting in treated mice. Honey displayed a higher percentage of analgesia of 72.88% and 79.48% compared with the 52.88% and 57.90% analgesia of the positive control indomethacin treated mice during the 1st (neurogenic) and 2nd (inflammatory) phase of the formalin test, respectively. Honey treatment did not induce significant anti-nociception in the acetic acid induced visceral pain writhing test and tail immersion test induced by ketorolac given based on low number of withrthes and short latency time displayed by treated mice, respectively. These findings demonstrate the Philippine stingless bee honey has a potential as an anti-nociceptive or anti-pain substance for inflammatory somatic pain which may probably involve blocking the synthesis release and/or action of inflammatory mediators.

PP-033 [Aphitherapy]

Bee pollen samples from Turkey and Slovenia: A comparative study on their phenolic profiles, antioxidant, and anti-inflammatory activities

Etil Guzelmeric1, Nisa Beril Sen1, Eceus Sezen2, Rengin Reis3, Hande Sipahi4, Vesna Glavnik5, Irena Vovk5, Erdem Yesilada1
1Yeditepe University, Faculty of Pharmacy, Department of Pharmacognosy, Istanbul, Turkey
2Biopolymer and Biomaterials Laboratory, Universidade de Araraquara, UNAERA, Araraquara, Brazil
3Laboratory for Food Chemistry, National Institute of Chemistry, Ljubljana, Slovenia
4Yeditepe University, Faculty of Pharmacy, Department of Toxicology, Istanbul, Turkey
5Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil

Turkey is located at the intersections of European-Siberian, Iranian-Turan and Mediterranean phyto-geographical regions harboring a rich flora of over 1,750 plant taxa. Turkey links Asia to Europe and contributes to exchanging plant species between the two continents. Slovenia is situated in Central Europe at the midpoint of Mediterranean area, Alpine region, and Pannonian plain. Beekeeping is one of the oldest and most traditional agricultural activities in both countries. Among the bee products, bee pollen is composed of floral pollen with nectar or honey, enzymes, wax, and bee secretion. It is used in various traditional and commercial medicinal treatments due to its highly health-promoting components. It is recognized as “the only perfectly complete food” because it includes all the essential amino acids required by people. However, its chemical composition is directly related to the botanical species of the plant used by the bee. This study aimed to comparatively investigate the chemical and bioactivity profiles of thirty bee pollen samples from Turkey and Slovenia. Initial pathological analysis demonstrated that twenty samples were monofloral bee pollen originating mostly from Castanea sativa, Salix sp., Bellis sp., and Hedera helix, and the rest were multifloral. Besides, thirty compounds were screened by HPTLC method and the most common phenolics in bee pollen samples were determined as caffeic acid, chlorogenic acid, rutin, kaempferol, quercetin, hyperoside and luteolin. HPTLC-MS analysis resulted also in identification of unknown compounds. In bioactivity testing, the monofloral bee pollen sample from Castanea sativa showed the highest antioxidant activity by DPPH, CUPRAC, and FRAP methods respectively.

Organic food comes from sustainable and eco-friendly production, while functional foods provide health benefits. The organic and functional food market grows every year. Bees produce propolis from plant exudates aiming to protect the hive and its inhabitants. Various biological activities for this material have been described, justifying interest in this product for health promotion. However, propolis generally is presented in alcoholic solution, has poor bioavailability, as it is relatively insoluble in water. Its common use is as a topical treatment which is probably not optimal.

PP-034 [Aphitherapy]

Propolis EPP-AF® loaded microcapsules – development, characterization and biological activities

Andresa A. Benetto1, Jessica A. Lima1, Isabel S. Gonçalves2, Saraia F. Galdino3, Ricardo Calheira3, Lilian Barros2, Nathália U. Ferreira1, Nathália A. Amorim1, Juliana Correia1, Hermann S. Barud2, Miguel Vilas Boas3, David De Jong4, Jairo K. Bastos5
1Research, Development & Innovation Department, Apis Flora Indú. Coml. Ltda., Ribeirão Preto, Brazil
2Biopolymer and Biomaterials Laboratory, Universidade de Araraquara, UNAERA, Araraquara, Brazil
3Montain Investigational Center, Bragança Politecnical Institute, Bragança, Portugal
4Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
5Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil

Propolis-loaded microcapsules were successfully obtained, with spherical shape and encapsulation efficiency of 93.7±0.0% IC50 of 2.65±0.03 µg/mL and 7.3±0.02 µg/mL by FRAP and DPPH antioxidant methods respectively; they had superior antimicrobial activity against gram-positive strains. Antitumor activity was calculated based on the concentration that inhibits 50% of cellular growth (IC50) in A549, Caco2 and MCF-7 strains, giving results of 154±11 µg/mL, 1171±10 and 271±0.25 µg/mL, respectively. Propolis-loaded microcapsules were significantly more potent than propolis-liquid, increased the solubility of propolis by 53.7%, demonstrating anti-inflammatory activity and gave an IC50 of 59±0.1 µg/mL for NO production in RAW264.7 cells. These results demonstrate the potential of this new propolis presentation to be offered as a food and pharmaceutical ingredient, though additional studies are recommended in order to validate the safety of proposed dosages.
PP-037 [Apitherapy]

Mineral infused honey’s effect on nutrient deficiencies
Hossein Vegenahrad1, Mackenzie Nielsen2, Mahmoud Kajojouri3, Pooyah Pish Bahar4, Zahra Azarae5, University Of Tehran6, Ali Asghar Hospital7

92% of the global population has a mineral deficiency. Approximately 20% of global population has an Iron deficiency. As honey is a pure glucose, you absorb 100% of its contents within the first 5 - 10 minutes of consuming it. Not only that, but raw honey is full of tons of healthy enzymes which can act as a digestive aid when consuming complex foods. When bees are fed a surplus of healthy minerals and vitamins, the nutrients aren’t fully metabolized by the bees and it gets directly integrated into honey. We found that using this methodology was able to make the vitamins and minerals more bio-available for humans when consuming. In our short trials, our intervention group (n=40) were able to help treat their iron deficiencies after 1 month of daily consumption. The lab results before and after consumption confirm the recovery of mineral deficiencies by +/- 75%, even though the level of the consumption was 50% less than the recommended dosage. In this presentation we are going to talk about extraction, method of production, case studies and clinical trials to confirm the efficacy of these revolutionary products.

PP-038 [Apitherapy]

The Effect Of N-Chromosome Royal Jelly, Queen Wax, And Bee Venom On Eczema And Psoriasis
Hossein Aparies Vegenahrad1, Mackenzie Nielsen2, Mahmoud Nielsen3, Pooyah Pish Bahar4, Zahra Azarae5, Amir Sharbatib6, Ali Asghar Hospital7

Psoriasis and eczema are considered an auto-immune disease that causes red, itchy, scaly patches on the skin. These symptoms are caused by a weak immune system. By combining N-Chromosome Royal Jelly, Queen Wax, and Bee Venom, our case studies done on our invention group (n = 172) found 80% of people fully recover after 1 month of consumption and topical application (in the form of cream, lotion, or mask). Those who only participated in the oral consumption saw better results than those who only participated in the topical utilization, as those who strictly used the lotions would need to re-apply every 8 months to a year's time. Upon every successful application of the two products, the symptoms of the disease would reduce. After 8 years of conducting these case studies, based on the reports from the patients, there are no more symptoms caused from the disease returning from over 90% of the patients. This shows that the main causes of these diseases is an internal issues. The results from these case studies are quite promising and we will be proceeding with further clinical trials. In this presentation we will be discussing the method of production, extraction, and method of application to help treat eczema and psoriasis.

PP-039 [Apitherapy]

Covid-19 and Anatolian propolis: a case report
Duygu Zorlu1, Resat Kublay Irkan2

As an age-old folk remedy, it is widely accepted that propolis has natural anti-inflammatory properties. Anatolian propolis is a different form among bee products group. Propolis has taken its current place as a food supplement during the pandemic period and new studies on propolis against COVID-19 have gained momentum. 38-year-old male patient, who served as a medical secretary, first complained of a tickling in his throat. RT-PCR was requested from the patient who presented with this complaint and was in the high-risk profession. The routine blood values and Thorax CT results of the patient whose test was positive were normal. Medical treatment recommended in the Ministry of Health guidelines was initiated for the patient. The patient’s complaint got worse on the 5th day. The patient was hospitalized and after 72 hours, the patient’s fever continued. The patient started respiratory failure and his general condition worsened. It was decided to follow the patient in the intensive care unit (ICU) and toclizumab. Although 2 days passed, the patient’s oxygenation and clinic status did not improve. For this reason, BEEO‘UP (bee&you) 30% Anatolian propolis drops / day was applied to the patient. At the end of the third day, improvement began in the patient’s oxygenation, blood parameters and radiological findings. For 5 days, the patient was followed up with IV mofloxacon, 60 mg intravenous, 4 mg intravenous, low molecular weight heparin (LMWH) and BEEO‘UP (bee&you) 30% (bee&you) Anatolian propolis. The patient’s clinic improved and the patient was taken to the service on the 7th day of his admission to the ICU. The patient was discharged on the 10th day of hospitalization. At the health check-up in 1 month later, the patient had no complaints except for forced exertion dyspnea, blood parameters normalized and abnormal radiological findings in Thorax CT completely regressed. As a result, Anatolian propolis can be added to the existing treatment protocol in patients diagnosed with COVID due to its easy, safe and low cost.

PP-040 [Apitherapy]

Effect of propolis on wound healing in sacrococcygeal pilonidal disease: a randomized controlled clinical trial
Mehmet Kubat1, Zülükfar Karabulut2, Serkan Şengüç2, Aslı Elif Tanjuç Sarman2, Duygu Ortucu2

Wound healing and recurrence are the leading problems encountered in sacrococcygeal pilonidal sinus disease. Propolis has a place in both traditional and complementary medicine, and in vitro and in vivo studies have reported its anti-inflammatory, anti-oxidant, anti-bacterial, anti-fungal and immunostimulant properties. In the present study, we discuss the effect of propolis on wound healing in sacrococcygeal pilonidal diseases treated with marsupialization. Patients who were admitted to our clinic with sacrococcygeal pilonidal disease were analyzed prospectively, with a total of 33 patients divided into study and control groups. All patients underwent marsupialization surgery, and the wound areas were analyzed post-operatively, on the 0, 7th, 14th, 28th days and on the day of complete recovery. An acceleration of wound healing was observed from the first week that was found to be even faster between days 14 and 28. The complete recovery score in the study group was significantly lower. Propolis can be used to accelerate wound healing when the marsupialization method is preferred in patients diagnosed with uncomplicated sacrococcygeal pilonidal cyst due to its low cost, good patient compliance, low side effect profile, lack of toxicity and high efficacy.

PP-041 [Apitherapy]

Apitherapy in Bosnia and Herzegovina
Aza Licina Sinanovic1, Medhat Jasic2, Senad Hocic3

In recent decades, the use of bee products in B&H has transformed. Most used bee products are honey, royal jelly, pollen and propolis and more recently wax, bee venom and api air have been recognized. Two bee product which is mainly preparing are propolis and pollen, and their mixtures with honey. In B&H pharmacies only few bee products, such as royal jelly and propolis extracts, are present. Only two B&H pharmaceutical companies pack royal jelly-bases mixtures, mainly from import raw materials. In addition, apitherapy did not recognized from official medicine and pharmacology. Propolis can be added to the existing treatment protocol in patients diagnosed with COVID due to its easy, safe and low cost.
products, based on folk medicine, the products are not standardized, and their sale is mostly done on the doorstep.

PP-006 [Apitherapy]

Effect of propolis extract on genital warts

Shahram Dadgarsta

College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran

Propolis or bee glue is the sticky parts of bee hives that made by honey bees. This valuable product plays an important role for the human health. One of them is the antibiotic effect of propolis that was evaluated and confirmed. Genital wart is one of the most important challenges in recent years and is very difficult to treat. This viral disease can cause uterine cancer in women and many other diseases in men. In a clinical study that was conducted in Iran in 2021, an ethanolic extract of propolis (7%) was used to remove genital warts. For this research, propolis extract was mixed with sesame oil (1:1) and used for five patients with the age 35 to 45. One month and twice a day was the period of applying this mixture (EPP and sesame oil) only on the points that genital warts were located. Three cases were treated only with sesame oil without propolis extract as a control. The trend of warts (shape and numbers) was checked every week and the data were recorded. Also, the final results at the end of the treatment were evaluated. The results showed that propolis extract, due to its antiviral properties, significantly reduces the number and size of warts and cures them after a while (95%). This study showed by increasing the number of people tested, examining different doses and side effects of the bee product, a drug to treat genital warts can be obtained in this way.

PP-007 [Apitherapy]

Relationship between the antibacterial capacity of Ulmo honey with the contribution of Eucryphia cordifolia pollen: the Active Patagonia Factor (APF)

Gloria Montenegro1, Paula Núñez2

1Faculty of Agronomy e Ingeniería Forestal, Departamento de Ciencias Vegetales, Pontificia Universidad Católica de Chile, Santiago, Chile

2PhD Student, Facultad de Agronomía e Ingeniería Forestal, Departamento de Ciencias Vegetales, Pontificia Universidad Católica de Chile, Santiago, Chile

Chile is one of the world hotspots that can produce a range of honey diversity. The two great mountain chains along the country, the Andes Mountain and the Coastal Range, generate very diverse geomorphology, where almost half of the vascular flora is found along the Andes. This creates various给 the honey producers a unique character to the honeys. The production of unifloral honeys from endemic species arises in two geographical Chilean regions. The first corresponds to the Central Zone, with a semiarid Mediterranean climate, while the second corresponds to the south and Patagonian region. Some of the unifloral honeys produced in these two areas are originated from Escallonia pulverulenta, Cryptocarya abuja, Quillaja saponaria, Calclavia paniculata, Gevuina avellana and Eucryphia cordifolia.

A phytochemical screening of Ulmo honey Eucryphia cordifolia was developed by several methods. The total phenolic content was evaluated by Folin-Ciocalteu assay and total flavonoids were determined using the aluminum chloride method. The scavenging activity was determined using the DPPH and ABTS radical scavenging assays. An Allnex triple Quad 45000 mass spectrometer equipped with an electrospray interface coupled to a Qtof mass spectrometer was used to identify polyphenols. Quantification was performed with calibration curves using commercially available standards. The antibacterial activity of Ulmo honey was tested with various percentages of pollen from E. cordifolia, against Echerichia coli, Staphylococcus aureus, and Salmonella enterica. The presence of gallic, caffeic, coumaric, abscisinic and chlorogenic acids as well as pinocembrin, chrysin, quercetin, luteolin, apigenin, and rutin was detected in the samples of this honey.

The results showed a positive relationship between the amount of floral pollen from Eucryphia cordifolia and the greatest antibacterial activity of its honey. It was also observed that the antibacterial activity of the honeys which has been Manuka 5+ and Jarrah honeys. Based on the activity of more than 500 honeys from Chile, the Active Patagonia Factor (APF) seal was created. The APF factor indicates different levels of antimicrobial activity of the honeys, controlling the growth of these pathogenic bacteria.

PP-008 [Apitherapy]

Claude Borroto Echavarri1, Volkan Tanaci, Nicolas Charbonnier2

1French Speaking Society of Apitherapy, France

2CityBzz, Paris, France

Aim:

Bees emit “sounds” audible to the human ear. It would, however, be misleading to denominate these “sounds” exclusively as “acoustic”. In terms of human perception, the sounds emitted by bees can be considered. What we humans perceive as “sound” is not necessarily limited the physical aspect of the signal perceived by the human: What interests? A pilot study

Method:

24 healthy individuals have been randomly distributed in two groups of 12 before they experienced listening to an inside beehive bee sounds record (IHS group) or to an outside beehive bee sounds record (OHS group). Each individual had to fill in specific standardized mood questionnaires TEIQUE-s and POMS-s before listening to bee sounds recordings. After the bee sounds recording, they carried on filling in the mood questionnaires. The sounds were recorded immediately after listening to bee sounds record, in order to study the modifications in terms of emotional abilities, anxiety, anger, sadness, alertness, mental fatigue and confusion. The by-law on honey and other bee products issued by the B&H Food Safety Agency is outdated and does not cover the field of apitherapy and the use of bee products for medical purposes.

Results:

The results have been obtained in two groups. The IHS and OHS group were not different in terms of age, sex-ratio and emotional abilities (p>0,05). The IHS group and OHS group are not different in terms of emotional abilities, anxiety, anger, sadness, alertness, mental fatigue and confusion. Heart rate and skin resistance have been recording too.

Discussion:

Low frequencies like that of the bee sounds have a soothing effect on individuals. Bee sounds baths (both inside and outside recordings) appear to decrease anxiety but inside and outside records seem to play different actions on the other component parts of human mood. More work is required to disentangle these sources of variability to better understand what drives the observed trends.

Conclusion:

Vibratory and airborne-sound signals of bee show a very positive effect on human mood. Further work is required.
Quantitation of the Myo-Insitol and D-Pinitol Levels as Promising Bioactive Constituents of Pine Honey and Elucidation of the Pathway by Analyzing Phloem of Pinus Brutia and the Secretion of Insect Marchalina Hellenica

Ismail Emir Alaydiz, Özge Eriden, Sinem Raday, Sezer Acar, Dilek Uzunöner, Emel Damarik
Atişparmak Food Co. R&D Center, Istanbul, Turkey

Pine honey is an important valueable honeydew honey and its production is mainly produced in Pinus brutia forests. Honey is produced in beehives in terms of floral diversity and mild climate conditions. The fact that Pinus brutia is most common in Turkey in the world brings great wealth in terms of pine honey production. For this reason, Turkey is the leader in the production of pine honey. Marchalina hellenica uses secretions of P. Brutia (phloem secretion) instead of flower nectar. M.hellenica changes these secretions with various biochemical metabolic reactions and then Apis Mellifera L. (Honey bees) produces pine honey by using these secretions (Basra secretion) as nectar. Thus, while M.hellenicaeives on P. brutia and feeds on P. brutia secretions, it also contributes to the production of pine honey by honey bees. Literature survey showed that, up to date there are limited reports on the chemical composition of secretions of P. Brutia and M. hellenica along with pine honey. In this study, a non-targeted based analytical investigation was applied to the abovementioned samples. Discovery mode GC-MS analysis indicated predominant concentrations of Myo-inositol and D-Pinitol levels in samples. Chemical components were characterized according to their retention times and using library data NIST70. Secretion and pine honey samples in this study were collected from Muğla province during the pine honey production season (October 2023). Absolute quantification of the purified cyclotol in pine honey and secretions (Basra and phloem) which plays a key role in producing pine honey was performed by utilizing LC-MS analysis. According to foreseen metabolic pathway, as expected higher levels of both Pinitol and Insitol ingredients were found at phloem followed by Basra secretion. Lower concentration of myo-inositol (180 mg/kg) and D-Pinitol (190 mg/kg) were observed in pine honey in comparison to secretions. Nevertheless, the detection of a high concentration of cyclotol in secretions is an important finding that pine honey can be consumed as a food supplement and that it can offer alternative health benefits as well as its phenolic content rich in bioactive components.

Air condensate composition of bee nest

Roman Dvykaliuk1, Leonora Adamchuk2
1Department of Standardization and Certification of Agricultural Products, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
2National University of Life and Environmental Sciences of Ukraine; National Science Center PI Prokopovich Institute of Beekeeping; Public Organization Foundation of Women Beekeepers, Kyiv, Ukraine

The aim of our work was to study the composition of the air of the bee nest. The work was carried out at the National University of Life and Environmental Sciences of Ukraine during 2018-2019. The microclimate of the bee nest has been studied significantly from the point of temperature, humidity and in a lesser extent its gas composition. We designed and manufactured the device «Condensation frame», consisting of: a screen anodized aluminum sheet with thermoelectric cooler attached on the back side; water heat dissipation system; condensate tray; power supply unit. The device was placed inside the bee nest in the hive individually for each colony. The device is operate over the network 220-240V/50 Hz. Cooling the screen of the device to ~10°C makes it possible to obtain condensate of hive air. Studies of the obtained condensate samples were performed in the laboratory of In Consulting LLC (Ukraine) by gas chromatography with mass spectrometry (Agilent 6890 GC 5973N GC / MSD 7893 Autosampler, B-225, 30 m x 0.25 mm x 0.25 nm, carbon gas - helium). Phenol, 2,4-diacetyl-1,1-dimethylbutyl; Dodecanedioic acid, methyl ester; Methyl tetradecanoate; Methyl 13-methyltetradecanoate; Methyl 12-methyltetradecanoate; Pentadecanoic acid, methyl ester; Tetradecenoic acid, 5,9,13-trimethyl; methyl ester; Pentadecanoic acid, 14-methyl; methyl ester; Hexadecanoic acid, methyl ester; Hexadecanoic acid, 15-methyl; methyl ester; Hexadecanoic acid, 14-methyl; methyl ester; Heptadecanoic acid, methyl ester; Octadecanoic acid, methyl ester; Octadecanoic acid, 10-methyl; methyl ester; Nonadecanoic acid, methyl ester; Eicosanoic acid, methyl ester; Henicosanoic acid, methyl ester; Docosanoic acid, methyl ester; 1,2-Benzenedicarboxylic acid, mono (2-ethylhexyl); Tricosanoic acid, methyl ester; 1,2-Benzenedicarboxylic acid, mono (3-ethylhexyl); Tetradecanoic acid, methyl ester; Hexacosanoic acid, methyl ester; Heptacosanoic acid, methyl ester; 2,4,6,7,8,8a-hexahydro-3,8-dimethyl-4-(1-methylheptylidenone); 85-cis) were identified in the hive air. For further scientific work the substances were studied using electronic resources https://pubchem.ncbi.nlm.nih.gov/ and https://webbook.nist.gov. The results can be used in apitherapy or to regulate the climate in the bee nest.

Development of health nutrition programs based on bee products for people during the post-COVID period

Artem Antonov1, Leonora Adamchuk2, Robert Chiebo3
1National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
2National University of Life and Environmental Sciences of Ukraine; National Science Center PI Prokopovich Institute of Beekeeping; Public Organization "Foundation of Women Beekeepers", Kyiv, Ukraine
3Slovak University of Agriculture, Nitra, Slovak Republic

According to the WHO definition, post-COVID syndrome is a condition after COVID-19 that occurs among people with a likely or confirmed SARS-CoV-2 infection, usually three to six months after the onset of symptoms. During this period, a person may experience new, temporary or even prolonged health problems that require a comprehensive approach to treatment and rehabilitation. Diseases of the gastrointestinal tract, respiratory and hepatobiliary systems are most often attributed to the manifestations of post-COVID syndrome. Long-term changes in intestinal microbiota are possible due to the increase of pathogenic strains and reduction of beneficial bacteria. Therefore, it is a mistake to use antibiotics that can aggravate the intestine condition. Instead, healthy nutrition should be applied to the basis of natural probiotics and substances that restore the microbial balance of the human body, strengthen the immune system and contain bioavailable substances. These include all bee products, including secondary products such as wax moth extract. They are widely used to improve the physical, biological and functional properties of food products. In particular, as non-traditional ingredients with certain treatment and preventative characteristics (propolis), natural products with a full composition (bee pollen) or able to restore human microbota (bee bread). Formulations for new food products have already been developed by many scientists. For example, a new formulation of a dough base for a dessert product based on dry confectionery mixtures with the addition of a mixture of propolis and royal jelly has been developed. Rheological and organoleptic studies of dough preparations show an increase in biological value of the new product without changes in its viscosity and organoleptic parameters. Similar formulations especially based on propolis, bee pollen, drone larvae homogenate, royal jelly are many around the world. However, in our opinion, it is important to develop nutritional programs in accordance with the needs and health of the population. Therefore, we founded a new project, including experimental research, to organize the development of health nutrition programs for different groups of the population, given their difficulty of work, to reduce the negative impact of SARS-Cov-2 infection on the body and the rehabilitation of people during, and after post-COVID syndrome.

Use of standardized poplar propolis powder in the treatment of chronic diarrhea in dogs and cats

Philippe Garcia
Association Francophone d’Apithérapie

Chronic diarrhea in dogs and cats is a frequent reason for consultation and a real therapeutic challenge. Conventional therapies are often disappointing over time and have significant side effects because, depending on the case, they resort to immunosuppressive treatments and/or long-term antibiotics. These treatments are also often extremely expensive and, in the case of antibiotics, contradict national and WHO recommendations in the fight against antibiotic resistance. As part of our daily veterinary practice, the use of a standardized powder of poplar propolis with 21% total polyphenols, seemed relevant to us to treat this type of pathology, because of its antimicrobial and anti-inflammatory properties. Our work aimed to evaluate the impact of a poplar propolis powder standardized in total polyphenols on a small number of individuals with chronic diarrhea. We have set up a supplementation protocol for animals suffering from chronic diarrhea after the most precise etiological diagnosis possible. The animals receive a treatment based on standardized poplar propolis powder at the rate of 2 to 4 mg/kg of standardized powder three times a day for 30 days. Animals are monitored regularly during and after treatment. Our results show a clear improvement and sometimes an almost total disappearance of symptoms from the fifteenth day of treatment. In conclusion, this study of observational cases seems to show beneficial results of supplementation with a standardized extract of poplar propolis on chronic diarrhea in dogs and cats. However, protocols need to be further refined and more clinical cases need to be recruited.
PP-019 [Apitherapy]

Use of bee venom in the treatment of locomotor pathologies in dogs

Philippe Garcia
Association Francophone d’Apithérapie

Locomotor disorders in dogs are a frequent reason for consultation in dogs. Whether in the context of a trauma or in the context of the evolution of an osteoarthritis process more or less associated with degenerative myelopathy, the conventional therapies put in place are often no longer effective after a few months of treatment. As part of our daily practice, we wanted to verify the effect of bee venom in dogs, due to its anti-inflammatory, anti-nociceptive and anti-degenerative properties. We have selected dogs for which conventional treatments were no longer giving

RESULTS:
- A polytraumatized dachshund dog following a road accident. The animal one month after surgery was very difficult to get up despite the medical treatment put in place.
- Several large breed dogs over the age of 13 who presented with multiple osteoarthritis lesions, particularly on the hindquarters, sometimes associated with degenerative myelopathy. These dogs no longer responded sufficiently to the anti-inflammatory treatment put in place.

We have adapted the protocol of Dr. Jorge CORREDOR, namely, 7 subcutaneous injections of 3 IU of bee venom next to acupuncture points. The injections were spaced one week apart for 3 weeks and then an injection a month later. The dogs were reassessed weekly and then one month later. We were able to observe the effect, in almost all cases except one for which a new diagnosis of thoracolumbar spondylodiscitis was made. In two cases the result was described as spectacular by the owners, these two animals are regularly evaluated and have not to date presented a relapse.

In conclusion, in agreement with the observations of Dr. Corredo, bee venom therapy seems interesting in dogs. However, larger-scale, double-blind studies are needed to confirm these observations. The biggest difficulty in France is the lack of medical grade venom. The use of bees, although possible, is less easy in a veterinary clinic and requires the prior mowing of the hives.

PP-021 [Apitherapy]

Physicochemical characterization and in vitro evaluation of the antioxidant and anticandidal activities of Moroccan propolis

Badiaa Lyoussi1, Abderazak Aboulghazi2, Soumaya Touzani3, Mouhcine Fadil4
1Abderazak Aboulghazi1,Department of Biology, Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Sidi Mohamed Ben Abdellah University, Fez, Morocco
2Soumaya Touzani,1Department of Biology, Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Sidi Mohamed Ben Abdellah University, Fez, Morocco
3Mouhcine Fadil, 2 Physicochemical Laboratory of Inorganic and Organic Materials, Mohammed V University, Rabat, Morocco

Human mycotic infections are one of the major health problems worldwide. Prolonged use of antymycotic drugs has contributed to the development of resistance in pathogenic fungi. This study was conducted to examine antioxidant and anticandidal activities of Moroccan propolis. Two ethanolic extracts of Moroccan propolis were evaluated regarding the physicochemical parameters: Yield, pH, total carbohydrates, total proteins, total lipids, minerals, total phenolic content, total flavonoid content, and antioxidant activity using ferric reducing antioxidant power (FRAP) and (ABTS) assays. In addition, we assessed the in vitro anticandidal activity against vulvovaginal candidiasis strains, that is, Candida albicans, Candida glabrata, Candida parapsilosis, and Candida krusei, using the broth microdilution according to the CLSI/M27-A3 reference guidelines. The sample from the Oued Amlil area (OAPEE) contained high levels of resin, balsam, moisture, total carbohydrates, and total lipids: 59.8%, 0.71%, 2%, 1.01 gGlcEq/g, and 120 mg/g, respectively. Moreover, the sample from the Sefrou area (SPFEE) was richer in total proteins and minerals, with values of 2.5 g/100 g and 1.84%, respectively. The total polyphenol and flavonoid content in the propolis extracts were 117.38 and 194.68 mg of gallic acid equivalent/g, and 17.45–27.79 mg of quercetin equivalent/g, respectively. Regarding the antioxidant activity, the most effective propolis extract was the sample from the Sefrou area, at 72.5 µg/mL and 118.76 µg/mL, respectively. The total polyphenol and flavonoid content in the propolis extracts were 117.38 and 194.68 mg of gallic acid equivalent/g, and 17.45–27.79 mg of quercetin equivalent/g, respectively. Regarding the antioxidant activity, the most effective propolis extract was the sample from the Sefrou area, at 72.5 µg/mL and 118.76 µg/mL, respectively.

The presence of condensed tannins (37.1 mg catechin equivalent/100 g) was confirmed for BONUM HONEY.

CONCLUSION: Application of APC COMPLEX PLUS as addition to bee feed increase very strong the honey antioxidant potential.

Keywords: honey, antioxidant potential, phenolics compounds, tannins, ABTS, DPPH, OIP COMPLEX PLUS, BONUM HONEY.

PP-028 [Apitherapy]

Antioxidant potential of different honey varieties compared to BONUM HONEY

Adam Maciejec1, Rysszard Amarowicz2
1Rysszard Amarowicz, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Poland
2Adam Maciejec, BIO-PLUS, Radwanice, Poland

PP-029 [Apitherapy]

Toxicological and antimicrobial evaluation of BONUM HONEY

Adam Maciejec1, Anna Zadernowska2, Arkadiusz Zakrzewski3
1Adam Maciejec, BIO-PLUS, Radwanice, Poland
2Anna Zadernowska, Department of Industrial and Food Microbiology, University of Warmia and Mazury in Olsztyn, Poland
3Arkadiusz zakrzewski, Department of Industrial and Food Microbiology, University of Warmia and Mazury in Olsztyn, Poland

Polish honey enriched in proanthocyanidins and essential oils (OPC COMPLEX PLUS) – “BONUM” was analyzed for its antioxidant and toxicological potential. Antibacterial potential against five species: E. coli (n=3), S. enterica (n=3), S. aureus (n=3), E. faecalis (n=3) and L. monocytogenes (n=3) were tested with microdilution method on 96-well plate with absorbance measurement. Toxicological evaluation was determined by repeated dose 28-day oral toxicity study on female Wistar rats based on Organization for Economic Co-operation and Development (OECD) guideline No. 407. Obtained results showed that 25% concentration of honey inhibited growth of gram-negative bacteria in range of 94.87%–98.53%. Slightly lower inhibition concentration and minimum fungicidal concentration of the Moroccan propolis ethanolic extracts ranged between 31.2 and 62.5 µg/mL and 62.5 and 125 µg/mL, respectively. The total polyphenol and flavonoid content in the propolis extracts were 117.38 and 194.68 mg of gallic acid equivalent/g, and 17.45–27.79 mg of quercetin equivalent/g, respectively. The analysis of phenolic compounds using high-performance liquid chromatography with a diode-array detector revealed the presence of 13 polyphenols. The main component in the OAPEE sample was epicatechin (310 mg/g), whereas in the SPFEE sample was apigenin (410 mg/g). Regarding the antifungal activity against Candida species, the minimum inhibitory concentration and minimum fungicidal concentration of the Moroccan propolis ethanolic extracts ranged between 31.2 and 62.5 µg/mL and 62.5 and 125 µg/mL, respectively. The total polyphenol and flavonoid content in the propolis extracts were 117.38 and 194.68 mg of gallic acid equivalent/g, and 17.45–27.79 mg of quercetin equivalent/g, respectively. The analysis of phenolic compounds using high-performance liquid chromatography with a diode-array detector revealed the presence of 13 polyphenols. The main component in the OAPEE sample was epicatechin (310 mg/g), whereas in the SPFEE sample was apigenin (410 mg/g). Regarding the antifungal activity against Candida species, the minimum inhibitory concentration and minimum fungicidal concentration of the Moroccan propolis ethanolic extracts ranged between 31.2 and 62.5 µg/mL and 62.5 and 125 µg/mL, respectively.

Keywords: antioxidant activity, propolis, total flavonoids, total polyphenols, vulvovaginal candidiasis.
Influence of processing procedures on the antibacterial activity of bee pollen and propolis on some pathogenic bacterial strains

Cristina Mateescu1, Irina Moraru1, Angela Moraru1, Florentina Matei2
1Laboratorul Medical, Otopeni, Romania
2Universitatea de Stiinte Agricole si Medicina Veterinara – Facultatea de Biotehnologie, Bucharest, Romania

BACKGROUND: Bee products are increasingly growing in interest among consumers due their already proven nutritional properties and biological effects. However, it is a known fact that some of them like bee collected pollen (fresh or dried) and propolis are not completely absorbed and digested to due to their structure (bee pollen) and composition (propolis) that lower bioavailability of some of their main compounds. Several processing methods have been proposed in order to increase their potential beneficial effects.

METHODS: Bee pollen fermented in a SCOBY consortium, ultrasonic treated solution of fermented polyfloral pollen, brown propolis tincture and (hydro-ethanol extract) the ultrasonic treated tincture were extracted by solid phase micro-extraction, separated, and analyzed by GC-MS.

MATERIALS-METHODS: Bee pollen fermented in a SCOBY consortium in kombucha (fermented green or black tea), brown propolis, and propolis fermented in ultrasound technology which can improve the fermentation of Kombucha culture and production of polyflora. Some of them can be consumed directly (bee-collected pollen, honey, bee bread etc.), while others are the result of lactic fermentation such as powdered pollen, flavonoids and flavoring compounds. Powdered honey was also tested. The prepared solutions were tested against some pathogenic bacteria: Bacillus cereus, Salmonella typhimurium, Staphylococcus aureus, Escherichia coli.

RESULTS and CONCLUSIONS: B.cereus was strongly inhibited by the propolis tincture both normal and ultrasonic treated, fermented pollen and ultrasonic treated solution of fermented pollen showed very strong inhibitory effects on E. coli while Salmonella enterica and St.thymphonium were strongly inhibited by the same solutions as well as honey. Pseudomonas aeruginosa was not sensitive to any of the solutions. Although propolis is known for its strong antibacterial activity, it was not expected that the level of ultrasound used for the experiment could not yield the expected results. The results obtained for fermented floral pollen in SCOBY consortium are promising for extending the use of this new ingredient in keeping a balanced healthy condition of the human body.

Honey vinegar improves plasma antioxidant status and plasma lipids in mice

Omid Kalvandi1, Saleh Saeedi1, Mosta Shiri2
1Department of Animal Science, Kurdistan Agricultural and Natural Resources and Education Centre (AREEO), Sanandaj, Iran
2Hangvini Golan Kurdistan Company, Sanandaj, Iran

BACKGROUND: Recently, an increasing interest is paid to bee products obtained as a result of the fermentation process. Some of them can be consumed directly (bee-collected pollen, honey, bee bread etc.), while others are the result of lactic acid fermentation (honey vinegar and honey wine). As result of lactic acid fermentation, honey vinegar is obtained. The aim of this study was to assess the impact of honey vinegar consumption on plasma antioxidant status and lipid profiles in mice healthy.

METHODS: This study was conducted to evaluate the effects of water supplementation by honey vinegar on the plasma antioxidant status and lipid profiles in mice. A total of 20 mice were divided into four groups. Treatments were included: tap water with no honey vinegar (Control), and water containing 2.5, 5 or 7.5 ml/100 ml honey vinegar. Animals consumed a basal mice diet. The feeding and drinking was ad libitum for 60 days. Blood samples were analyzed for MDA levels and activities of superoxide dismutase, catalase and glutathione peroxidase as well as lipid profiles of triglycerides, total cholesterol, and LDL cholesterol as well as high (P<0.05) plasma levels of HDL-cholesterol compared with the mice in control group.

RESULTS: Compounds were identified, including acids, esters, alcohols, aldehydes, ketones, phenols, and hydrocarbons. Mice receiving the water supplementation by honey vinegar exhibited higher (P<0.05) plasma activities of superoxide dismutase, catalase and glutathione peroxidase as well as lower (P<0.05) plasma levels of malondialdehyde compared with the control group (tap water with no honey vinegar). Also, animals receiving water supplementation by honey vinegar had lower (P<0.05) plasma levels of triglycerides, total cholesterol, and LDL-cholesterol as well as higher (P<0.05) plasma levels of HDL-cholesterol compared with the mice in control group.

CONCLUSIONS: Our results suggest that water supplementation with honey vinegar could improve the antioxidant status and lipid profile of mice.

Gibberellic acid alters feed intake, morphology and vitellogenin (VG) gene expression in Africanized Apis mellifera bees

Gustavo Henrique Simões Pereira1, Vagner De Alencar Arnaut Toledo1, Eliane Gasparino1, Adriana Sinopoli Giglioli2, Jean Samel Rocha1
1Department of Animal Science, State University of Maringá, Maringá, Brazil
2Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil

The effects of adding gibberellic acid (GA3) on the performance, morphology and expression of the vitellogenin (VG) gene in Africanized “Apis mellifera” were evaluated in this study. For this purpose, newly emerged workers were divided into 25 cages with an average population of 150 bees. A diet containing feed with different concentrations of GA3, water and sucrose solution was fed for seven days. There was a reduction in feed intake, combined with epithelial damage in the mid gut, morphological changes in the enocytes and changes in the stages of the pericardial cells. However, this behavior did not follow a regular response when added higher concentrations of GA3 in the feed, denoting a possible detoxification capacity of this compound, depending on the concentration used. The results suggest that regardless of the concentration, this compound can cause cell damage in the intestine and fat body, in addition to reducing vitellogenin (VG) gene expression levels.

The permeability of cell cappings to gases, volatiles, pathogens and acaricides

Jiri Kubasek1, Karolina Svobodova1, Vaslav Kristufek2, Frantisek Puta3, Alena Bruce Krejci2
1University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
2Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
3Charles University Prague, Faculty of Science, Viničná 7, Prague, Czech Republic

Honey combs are essential for the lives of bees. They serve as a place for bees to gather, as a storage system for honey and pollen and as a safe microenvironment for rearing honey bee brood. All the pupal development occurs in the sealed space of the honey comb cells. As the developing bee metabolizes its nutrient stores it produces CO₂ and consumes oxygen. It is presumed that the lid of the capped cell is penetrable to gases so the pupa can breathe but there is a scarce evidence of how this is achieved.

We compared the structure of the brood comb and honey comb cappings by electron microscopy and microphotography to detect any permeable pores present. We also compared the cap wax composition by GC/MS and we measured the diffusion coefficient for CO₂ with the LI-COR gas analyzer.

We show that the wax composition of cappings is very similar. However, bees must use a different technique to build the cappings. While there are no pores present in the cappings of sealed honey cells, there are many pores in the brood cell cappings, reaching between 10-40 µm in diameter. Such big pores are easily permeable to gases but potentially also to pathogenic bacteria or fungi. The diffusion coefficients we measured confirmed high permeability of brood cappings for CO₂. On the other hand, the honey cappings were nearly gas impermeable.

Our finding elucidate the different structures of the brood and honey cappings. Both are built from similar material but their permeability differ enormously in order to perform different functions in the colony. While honey cappings seal tightly the honey stores, the brood cappings allow communication of the broad comb and developing larva with its environment. The pores in the brood cappings that we identified allow gas exchange in the comb cells, including the exchange of the pheromones and other volatiles present within the hive. Importantly, the pores could also be the points of entrance for pathogens and for chemical contaminants used by beekeepers to combat these pathogens.
understand the immune system and defense reactions against the harmful effects leading to colony losses. Improving the available and so far, undiscovered toolkits in the research of honey bee cellular immunity will help us to better understand the necessary conditions to face climate change.

Improving the available and so far, undiscovered toolkits in the research of honey bee cellular immunity will help us to better understand the immune system and defense reactions against the harmful effects leading to colony losses. Support comes from the Hungarian Beekeepers Association.

What makes the royal jelly Apis cerana koreana different from Apis mellifera ligustica honey bees in water-soluble protein compositions?

Olea Fuang1, Dongwon Kim, Eun Jin Kang, Kyungmun Kim, Bo Sun Park, Yong Soo Choi

Department of Agricultural Biology, National Institute of Agricultural Science, Republic of Korea

Royal jelly (RJ) is produced by the pharyngeal glands of the worker bees. It protects from diseases, determines the development rate of honey bee colonies, and stimulates the cell regeneration of other organisms. These functions are provided by a molecular composition, which includes proteins. However, we still don’t have a good molecular understanding of the existence of these functions. Therefore, we focused on the water-soluble (WS) proteins of the RJ at the Apis cerana koreana and compared them with data of the Apis mellifera ligustica honey bees bred in the Republic of Korea. The analysis of the proteins in non-denatured (native) and denatured conditions was carried out by the native SDS PAGE, 2 DE methods. We investigate that the number of proteins RJ of A. c. koreana were lower at 34 % in denatured and at 5 % in native conditions than A. m. ligostica, which can contain the key differences in the biological function of RJ. So, this data supposed the less complexity of the structure of some proteins RJ A. c. koreana which could not split into parts by denatured treatment compared to A. m. ligostica. Next, LC-MS/MS analysis was done of the four spot locations on the gels after 2DE. The 54 proteins of RJ A. c. koreana contained the 20 proteins found in the other animal species and honey bees, but they were not annotated as proteins of RJ. The last 14 proteins were detected in various animal species and were not found in the annotations of the honey bee proteins. According to their functions in the database NCBI, the newly detected proteins had an immune function of 14.7% of cases. Furthermore, in the NCBI and PDB databases, 63% of detected WS proteins were not annotated as RJ proteins. The RJ of two species of honey bees have different protection functions from infection due to the dissimilar protein compositions, studied in this research, probably by activating the diverse genes. This study highlighted unique protein characteristics that will aid future research into the molecular base of RJ protective activities that promote to implementation of human health products.

What we know so far and where to go further in the research of honey bee cellular immunity

Erika Gábor

Institute of Genetics, Biological Research Centre, Hungary

Nowadays, bee specific parasites, pathogens and pesticides used in the agriculture are endangering beekeeping, making great ecological and economical losses. Investigating the immune defense of the honey bee Apis mellifera is a key component to cure this issue. The immune system consists of humoral and cell-mediated responses. In the humoral responses soluble molecules are produced and organized into regulatory pathways. The effector cells of the cellular responses are the hemocytes, which phagocytes microorganisms, form capsules around large intruders in the haemocoeel, produce matrix proteins and AMPs. As a eusocial insect bee immunity also contains communal defense mechanisms, like grooming, hygienic behavior or the use of antimicrobial materials for nest construction, thus their immune system may have special elements.

In the beginning of investigating the field the effector cells of the cellular immunity were distinguished by basic morphological, lectin binding and functional characteristics in microscopic and flow cytometric experiments. Later on, monoclonal antibodies were produced and in combination with functional tests three main blood cell classes were identified. The phagocytizing granulocytes eliminate the microorganisms. The oenocytes, melaminizing cells secreting phenoloxidase (AmPPO), which initiates the melanization cascade. The plasmatocytes are involved in aggregation of the haemolymph and produce the Hemolecint (AmHml), which has human von Willebrand factor homology domains characteristic for proteins involved in coagulation and platelet aggregation. In the past few years this protein became available to test the immune cells in an ex vivo cell culturing system. With the help of these techniques the researchers could identify differences in the composition of blood cell populations according to development, different infections and even upon neonicotinoid treatment, which underlines the importance of the cellular immune responses.

However, the comparative analysis of the eusocial honey bee and the solitary Drosophila melanogaster cellular immune reactions reveals significant differences between these two species, highlighting the complexity of social organisms’ defense barriers.

In the study, it was also determined where the bee samples were located in the coordinate system in terms of morphological structure with Canonical Discriminant mapping. When the coordinate system is examined, it is seen that the samples taken from Kırıkhan and Reyhanlı districts are clustered close to each other, Yayladağı, Iskenderun and Altınözü are located close to each other in a separate place.

Determination Of Genetic Variation Using Morphological Methods in the Local Honey Bee (Apis mellifera) Breed in Hatay Province

Gülden Ayvaz Baykal1, Aziz Gür2

1Department of Animal Science of Agriculture Faculty, Hatay Mustafa Kemal University

In the Pyrenees in the south of France near Spain, we are fortunate to have more unspoiled areas than in other parts of Europe; the mountains and forests offer abundant nature for our bees. At the same time, much of the region is or has been used for extensive commercial agriculture, often contaminating areas used for human habitation. This leaves gaps where there should be life. To counter this, Ballot-Flurin Beekeepers have developed a site called the Free Bee Farm, the first in the world, which recreates the natural microbiome previously lost to human usurpation. This differs from rewilding in that the goal is to reconnect humans with the land and the bees, rather than further isolating ourselves. To overcome the inherent tendency toward protective separation, we have developed plant and land management techniques that allow the creation of communities based on symbiotic needs, rather than reinforcing the space between us. Danielle Heijboer, researcher, beekeeper, and agronomist will present our site with photos and diagrams as it exists today, where we are going, and how we can recreate the same concept in different ecological zones.

She will present the forests and meadows that feed the bees. As well as sanctuaries left wild. Soils are regenerated through agronomic techniques such as permaculture, biodynamics and syntropic plantings. Bees and other pollinating insects find all the necessary conditions to face climate change.

Bee farm

Catherine Flurin

Aphitherapist, Researcher, Beekeeper and Founder of Ballot-Flurin company

In the Pyrenees in the south of France near Spain, we are fortunate to have more unspoiled areas than in other parts of Europe; the mountains and forests offer abundant nature for our bees. At the same time, much of the region is or has been used for extensive commercial agriculture, often contaminating areas used for human habitation. This leaves gaps where there should be life. To counter this, Ballot-Flurin Beekeepers have developed a site called the Free Bee Farm, the first in the world, which recreates the natural microbiome previously lost to human usurpation. This differs from rewilding in that the goal is to reconnect humans with the land and the bees, rather than further isolating ourselves. To overcome the inherent tendency toward protective separation, we have developed plant and land management techniques that allow the creation of communities based on symbiotic needs, rather than reinforcing the space between us. Danielle Heijboer, researcher, beekeeper, and agronomist will present our site with photos and diagrams as it exists today, where we are going, and how we can recreate the same concept in different ecological zones.

She will present the forests and meadows that feed the bees. As well as sanctuaries left wild. Soils are regenerated through agronomic techniques such as permaculture, biodynamics and syntropic plantings. Bees and other pollinating insects find all the necessary conditions to face climate change.
Man has always tended to orient things towards practicality in the most basic sense: the simplest physical ways, the easiest facilities, systems that attenuate thought to create unreflective ways. However, by focusing on this accessibility more than anything else, we have filled our society with things that forget the flows and energies of nature, replacing them instead with materials and processes that help us up above all else. In beekeeping, this can be particularly destructive, as the sensibilities of the honey bee are still a mystery to most people. It is therefore crucial to learn the intrinsic nuances of the spaces and materials used in beekeeping, in order to better understand how to provide complete support to each colony. Olivier Raud will present his work on hive and wood polarity, energetic positioning and environmental flow, and their link to conscious beekeeping.

Through concrete examples and photos, he will show how to place hives in a space by detecting the precise location of underground water networks and faults to form a coherent whole and make the bees more resistant and productive. He will explain how the wood of the hive can be assembled according to the natural magnetic fields contained in the material for a noble habitat that gives the bees their sacredness. He will also explain how he has created tornadoes to house bees and humans in the same space and thus promote inter-species connections. This work is now highly regarded as the cutting edge of geological science.

Olivier Raud, beekeeper, researcher and meng shui, CEO of the company Ballot Flurin

PP-050 [Bee Biology]

The complete mitochondrial genome analysis of Apis mellifera jemenitica from Saudi Arabia

Nevra Alattal, Ahmad Alghamdi

Department of Plant Protection, College Of Food And Agricultural Sciences, King Saud University

The complete mitochondrial genome analysis of the Arabian Honeybee Apis mellifera jemenitica from Saudi Arabia has been characterized for 142 samples, twenty out of them were collected from feral mountainous colonies within Alhijaz region (Almadin Almunawarh and Tabuk), the rest of the samples were collected from non-migratory apiaries. Prior to mtDNA sequencing, all samples were morphologically identified and 132 samples were characterized as A. m. jemenitica. Genomes ranged from 16,352 to 16,445 bp, each comprising 13 protein-coding genes, 22 transfer RNAs, two ribosomal RNAs, and one control region. Based on analysis of coding regions results revealed 14 new mitogenomic haplotypes (MT745900-915) of the Arabian Honeybee (Apis mellifera jemenitica) and 32 new haplotypes for non-coding intergenic region (P and Q elements) (MT704140 - MT704171). The highest intra-subspecies variation was reported in NDS and CytoB genes, while the lowest intra-subspecies variation was in COII, ATP8, ND4 and ND3 genes. Phylogenetic analysis of the mitogenomes revealed 3 distinct haplogroups with a valid geographical correlation. Mitogenomes were very closely related to A. m. syriaca, A. m. lamarckii. Results of this project could be used in local honeybee preservation plans within Saudi Arabia.

PP-051 [Bee Biology]

Development of an effective pretreatment method for the isolation and enrichment of honey enzymes using pine honey and the hypopharyngeal glands of Apis mellifera L

Siprem Beday

A versatile sample pretreatment method for the honey matrix is still needed for any proteomic-based investigations. Invertase and diastase are the most important enzymes in the maturation of pine honey and the origins of these enzymes are attributed to the bee’s hypopharyngeal glands (HPG). In our study, we aimed to isolate and enrich these enzymes as model proteins representing the honey proteome in an efficient and practical way. As authenticity comparison, isolating the same enzymes from hPG samples was also accomplished. For yielding pine honey crude protein isolate, as a tandem two-step approach, stirred cell ultrafiltration followed by centrifugal ultrafiltration (CUP) protocol was determined after experimental optimization. HPGs were disintegrated using a bead beater followed by concentration using CUP. Protein profiles of pine honey and HPG were compared by SDS-PAGE. The resulting protein concentrations, enzyme activities, and the cleaning efficiencies of the applied techniques were evaluated and optimized using the Bradford assay, modified enzyme activity assays, and sugar profiling method developed at HPLC- RID. The raw protein content was increased at 1056.1 U, invertase at 1065.1 U, and diastase, 1050.1 U, and release enzyme activities with yields of 900.9% and 2432.6%, respectively. The final crude protein extract can be isolated as reference material at any authenticity and quality assays of honey. The obtained crude protein extract will pave the way for high throughput proteomic investigations at the honey matrix. Furthermore, this template methodology could be scaled up in the industry for natural enzyme production.

PP-052 [Bee Biology]

Therapeutic properties of Apis florea honey on Helicobacter pylori

Shahnaz Panietreh1, Ghulamhosein Tahmasbi2, Mohammad Estampanah3, Pejak Khai2

1Honeybee Department, Animal Science Research Institute of Iran, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
2Department of Microbiology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

Helicobacter pylori is a major cause of gastrointestinal cancer in Iranian men. The existing methods in the treatment of this bacteria have not been very effective, so finding effective methods in controlling this species is very important. Honey is a natural food product that has been proven to have antimicrobial properties against a wide range of pathogens. The purpose of this study was to compare the antimicrobial activity of 15 Apis florea honey samples collected from different floral and geographical origins against H. pylori. The antioxidant activity of honey samples was measured through FRAP, DPPH, and ABTS methods. In addition, antibacterial activities were assessed by in vitro and in vivo studies in gastrointestinal tract of mice. Statistical analysis exhibited that there was a significant positive correlation between antioxidant and antimicrobial activities in the honey samples. In vitro evaluation revealed that all samples had antimicrobial activities especially jujube honey from Bushehr. The differences in antioxidant and antimicrobial activities observed among honey samples were mostly related to plants flora and also geographical regions differences which honey samples were collected. Obtained results clearly indicated that the A. florea honey especially jujube honey had a high ability to prevent and cure infection and inflammation in the gastrointestinal tract caused by H. pylori bacteria and along with other available methods, can be used in H. pylori control.

PP-053 [Bee Biology]

Deformed wing virus infection affects the neurological function of Apis mellifera by altering extracellular adenosine signaling

Yun Heng Lu, Ping Chen, Yueh Lung Wu

Department of Entomology, National Taiwan University, Taipei, Taiwan

Deformed wing virus (DWV) infection is believed to be closely associated with colony losses of honeybee (Apis mellifera) due to reduced learning and memory of infected bees. The adenosine (Ado) pathway is important for maintaining immunity and memory function in animals, and it enhances antivirus responses by regulating carbohydrate metabolism in insects. Nevertheless, its effect on the memory of invertebrates is not yet clear. This study investigated how the Ado pathway regulates energy metabolism and memory in honeybees following DWV infection. Decreased Ado receptor (Ado-R) expression in the brain of infected bees resulted in a carbohydrate imbalance as well as impairments of glutamate-glutamine (Glu-Gln) cycle and long-term memory. Dietary supplementation with Ado not only increased the brain energy metabolism but also rescued long-term memory loss by up-regulating the expression of memory-related genes. The present study demonstrated the regulation of the Ado pathway upon DWV infection and provides insights into the mechanisms underlying energy regulation and the neurological function of honeybees.
Performance evaluation of 14th-18th generations of Iranian honeybee (Apis mellifera meda) bred queens and their comparison with control queens in different private apiaries of Iran

Gholamhossein Tahmasbi,1, Rahim Ebadi,2, Banaf Hasan,3, Shabnam Parichehreh,1 Mohammad Babaei,4, Eynollah Seyfi,1 Ali Sartippour1, Hamed Rezaei,1 Nader Mashayekhi1

1Honeybee Department, Animal Science Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
2Entomology Department, College of Agriculture, Isfahan University, Isfahan, Iran
3Genetic Department, Animal Science Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran

During recent years’ climate change has affected the world beekeeping industry, in Iran, in addition to dust phenomenon, disrupting rainfall, temperature and beekeeping season, and the economic crisis due to sanctions, problems in marketing and export of honey, beekeepers’ access to improved queens is a necessity of sustainable Beekeeping. The current study was aimed to evaluate the performance of the 14th-18th generations of breeding improved queens in Iranian Honey Bee Breeding Program, and their comparison with control queens kept in private apiaries. To evaluate the queens, specific questionnaires were designed and completed by beekeepers in their apiaries based on the performance of queens in private apiaries. Obtained results showed that the improved queens had better performance than control queens in terms of swarming and honey production (P<0.05), aggressive and calmness behavior (P<0.01) in comparison of control queens in private apiaries. According to the results of variance analysis, the effect of queen type (bred queen and control queen of beekeepers) on calmerness, aggressive, swarming behavior and honey production were significant but had no effect on overwintering. The obtained results showed desirable improvement of beekeepers, aggressive, swarming behavior and honey production, showed that to protect the Iranian honeybee as a valuable genetic resource, while preserving the superiority of genetically improved queens and genetic stabilization of improved traits, prevention of sex allelomygiosis which was characterized by increasing colonies performance, additional novel investigations against new problems of beekeeping industry are required.

Infertility of Varroa destructor and Iranian honeybee (Apis mellifera meda)

Gholamhossein Tahmasbi, Amin Mansouri Zalani, Naser Eman Jomeh Kashani, Mehdi Amin Afshar, Mohammad Babaei, Nader Mashayekhi, Pegah Vlizadeh, Shabnam Parichehreh

1Honeybee Department, Animal Science Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
2Ph.D. Student, Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
3Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran

In the present study, the infertility of Varroa mite were compared in resistant (VSH) and control colonies of Iranian honey bee in Animal Science Research Institute of Iran. One frame from each experimental colonies (16 treatment and 16 control colonies) containing about 400 larvae cells randomly transferred to natural Varroa-infected colonies for 48 hours to get infected. After capping the cells, the infected frame removed back to the experimental colonies. Then, a number of 200 cells were uncapped at two days of 0 and 10. At each stage, infection rate, the percentage of fertile mites, the number of cells containing mite eggs, the number of protophytums and deutonymphs were counted. The percentage of infestation in resistant and control colonies were 6.2±0.9 and 10.9±1.2 respectively showing a significant difference between the groups (P<0.05). Moreover, 56.3 % of the resistant colonies and 37.5% of the control colonies showed healthy behavior (VHS). Resistant colonies showed hygienic behavior (VHS) regarding the removal of infested pupae compared to control colonies and reducing the infection in colonies. The total mean of infertility in resistant and control colonies are 1.4±0.4 and 1.1±0.3 respectively. The total mean of eggs, protophytums and deutonymphs in resistant and control colonies were respectively 0.06±0.01, 0.4±0.2, 2.6±0.8 and 0.2±0.03, 3.1±0.8 and 4.6±1.1. Finding suggest that VSH behavior in adult bees reduces the rate infection to Varroa in pupas.

Comparison of Improved and Control Iranian Honeybee (Apis mellifera meda) Queens in Qazvin Apiaries

Nader Mashayekhi, Gholamhossein Tahmasbi, Mohammad Babaei, Shabnam Parichehreh, Hamed Rezaei, Ali Sartippour, Mohammad Babaei, Animal Science Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran

Taking advantage from genetically modified queens that have desirable productive traits and behavior is an important factor in improving beekeeping in Iran. The current study was aimed to evaluate the performance of the Iranian Honey Bee Breeding Program, and to compare them with control queens kept in Qazvin apiaries. To evaluate the queens, specific questionnaires were designed and completed by beekeepers. The results showed that the breeding improved queens had better performance than control queens in terms of calmerness, defensive behavior and overwintering in comparison to queens kept in private apiaries. In other words, the bred colonies were significantly different from control colonies (P<0.05). According to the results, in spite of competitive advantage, there was no significant difference between the bred queens and genetic diversity in terms of honey production and swarming. In general, the result of study showed the improvement of these traits and the superiority of the modified queens compared to control queens in Qazvin province.

The color of honey

Vera Sergeneva Dykova

Federal State Budgetary Scientific Institution Federal Scientific Centre of Beekeeping

In our country, beekeeping is an ancient trade and a favorite occupation of people, a profitable and entertaining business. Beekeeping as a business is necessary in agriculture, as it produces important bee products for humans, such as honey, propolis, wax, bee venom, royal jelly, etc. At the same time, consumers today face a number of problems in the market of bee products. Studying the problem of improving the quality of beekeeping products requires a systematic and integrated approach, therefore, organoleptic (sensory) analysis makes it possible to find an idea of the naturalness of honey and be able to identify it, as well as timely determine direct effects of physical and chemical characteristics of honey. Honey is an important success factor in its production (collection, processing, storage, crystallization and decrystallization). Let’s consider one of the essential characteristics of honey-color. The color of honey is an important aspect for trade and in determining its final use. Material for research there were 20 samples of natural honey collected in 2021 of various botanical origin, as well as various shades from transparent (like water) to dark. The method for determining the chromaticity of honey is based on photometric measurement of the percentage of transmission of a beam of light, followed by identification of the intensity of honey coloring on the Pfund color scale. The studies were carried out using a photometric photometer KFK-3, a certain wavelength range from 420 nm to 660 nm was selected in the literature there are data for determining the optical density of honey when using the photoelectric photometer FEK-56M (Chepurnoy I. P.), which are consistent with our indicators when using KFK-3. Based on the data obtained, it should be concluded that the coincidence of chromaticity in comparison with the Pfund scale gives a certain optical density on the KFK-3 photometer at a wavelength ~ 560 nm.

Peculiarities of hygiene of bees on the background of other biological signs

Tetiana Senchuk, Hanna Grechka, Oleksandr Senchyo, Iryna Kulynych, Ihor Peluchynia

Bee Breeding Department and Selection of Ukrainian Steppe Bees, Development of Fodder Base of Beekeeping and Economy, NSC “Institute of Beekeeping named P. I. Prokopovich”, Hadiach, Ukraine

Selection of bee colonies with the best hygienic behavior is a promising area of research, which should help improve the epizootic situation in apiaries, reduce material costs for their maintenance, intensify the production of organic products. As a result of research to determine the level of hygienic behavior of Ukrainian steppe bees, it was found that they are characterized by a removal of 76.8 ± 2.9 (p = 0.98-100) damaged larvae in 24 hours. This indicator was optimal for bees of families of the original group. Bees selected for improved hygienic behavior removed 22% more damaged brood. The bees classified into distinct bands, were intensively in the last 12 hours (77-78% of dead larvae were removed). The established time interval is predicted to be optimal for assessing the hygienic behavior of bee colonies.

Last year’s seasonal gross health productivity averaged 44 ± 0.81 kg per family. The rate is not very high, but within the total sample of apiaries (277 families) selected families with more hygienic bees in terms of productivity by 25.5% exceed the current apiary rates. Reconstruction of honeycombs by selected bees of the Ukrainian steppe breed with high hygienic behavior is 15.9 ± 0.19 on average per family. This is almost 34% more than the apiary average. The difference between the rates of bee infestation of varroa in experimental families is an important and significant result. In May last year, it was between the original and selection groups - 11%, in July - 20% in favor of the selected group. According to the results of the study, it can be assumed that the reduction of apiary infestation by Varroa destructor mites is possible provided that bee colonies with a high level of sanitation are kept. Since bees prone to thorough cleaning of their honeycomb cells were uncapped at two days of 0 and 10. At each stage, infection rate, the percentage of fertile mites, the number of cells containing mite eggs, the number of protophytums and deutonymphs were counted. The percentage of infestation in resistant and control colonies were 6.2±0.9 and 10.9±1.2 respectively showing a significant difference between the groups (P<0.05). Moreover, 56.3 % of the resistant colonies and 37.5% of the control colonies showed healthy behavior (VHS). Resistant colonies showed hygienic behavior (VHS) regarding the removal of infested pupae compared to control colonies and reducing the infection in colonies. The total mean of infertility in resistant and control colonies are 1.4 ± 0.4, 1.1± 0.3 respectively. The total mean of eggs, protophytums and deutonymphs in resistant and control colonies were respectively 0.060±0.013, 0.4±0.2, 2.6±0.8 and 0.2±0.03, 3.1±0.8 and 4.6±1.1. Finding suggest that VSH behavior in adult bees reduces the rate infection to Varroa in pupas.
Probiotics are living organisms that are eaten with the aim of altering the gut microbiota. The honey bee gut microbiota is composed of a wide range of bacteria, including multiple lactic acid bacteria (LAB) of the genus Lactobacillus, Enterococcus and Bifidobacterium. According to field studies, "Progen" in increasing population, honey bees, help prevent or treat medicinal ailments caused by disease or antibiotics. Probiotic bacteria are beneficial to the health of the bee and the hive by lowering pH, competing with pathogens for nutrients and space, and producing organic acids, antimicrobial peptides (AMPs), and bacteriocins. Therefore, feeding on these bacteria and strengthening this community of microorganisms through supplementation with probiotics, in addition to helping to increase digestion and absorption of food, increase population and bee production, help prevent or treat medicinal ailments caused by disease or antibiotics. The Ukrainian steppe breed of honey bees in Iran is licensed by the Veterinary Organization of Iran and is composed of bacteria of the genus Lactobacillus, Enterococcus and Bifidobacterium. According to field studies, "Progen" in increasing population, honey bee production and reducing the number of N. ceranae spores. Also play an important role in increasing the lifespan of bees.

PP-062

Systemic aspects of breeding

Oleksandr Senchuk¹, Hanna Hechka¹, Tetiana Senchuk¹, Halyna Stryjkiv², Iryna Kulyvyh¹, Ihor Pel'khhn¹

¹Department of Breeding and Selection of Ukraine Steppe Bees, Fodder Beekeeping Bases and Economy, NSC Institute of Beekeeping, Hadiach, Ukraine

²Department Of Veterinary Hygiene, Sanitary And Expertise, Odessa State Agrarian University, Odessa, Ukraine

The bee species Apis mellifera sossa is widespread and recommended for use in Ukraine. The range of Ukrainian steppe bees covers a large area of the Steppe and Forest Steppe of Ukraine with their characteristic features of natural and climatic conditions. Systematic studies of Apis mellifera sossa have been conducted since 1975. The first stage of selection work was to obtain lines of bees on the basis of purebred breeding, the maximum use of their genetic characteristics to achieve the greatest economic effect. An express method for assessing the breeding qualities of record-breaking families, ways to select bees in laboratory conditions.

PP-063

Fifty shades of grey in Carniolan honey bee population

Juremi Bulušić¹, ², Marin Kovačić³, Marina Meliner⁴, Jana Obstteter⁴, Ajda Molski⁵, Gregor Gorjanc⁶, Janez Prešern⁶

¹Agriculture Institute of Slovenia, Hacquetova 17, Ljubljana, Slovenia

²Department Of Veterinary Hygiene, Sanitary And Expertise, Odessa State Agrarian University, Odessa, Ukraine

³Department of Veterinary Hygiene, Sanitary And Expertise, Odessa State Agrarian University, Odessa, Ukraine

⁴Agricultural institute of Slovenia, Hacquetova 17, Ljubljana, Slovenia

⁵Agricultural institute of Slovenia, Ljubljana, Slovenia

⁶Department of Honey Bee, Animal Science Research Institute of Iran, Agricultural Research Education and Extension Organization, Karaj, Iran

The Carniolan honeybee (Apis mellifera carnica) was first described as a subspecies on the territory of nowadays Slovenia at the end of the 19th century. However, its native range includes the north-western part of the Balkan peninsula and the southeastern Alps, bordering with the area of A. m. ligustica on its south-western side. Slovenia’s SW edge thus is a Promise area of research. As a result of ten years of work, a high percentage of bee colonies has been cleaned. Selected bees of the Ukrainian steppe breed are able to completely remove damaged brood from nesting hives in 12 hours. Steady transfer of properties for several generations, stabilization of systems taking into account the future challenges, cofinanced by the European Regional Development Fund.

PP-064

Immunity And Physiology Of Mixed-Aged Worker Bees (Apis mellifera carnica, Pollm. 1879) Fed Protein Candies

Maia Ivana Smođić Slečić¹, Arnold Majdor², Ivana Tišk Gajger³

¹Agricultural Institute of Slovenia, Ljubljana, Slovenia

²Luna Vet, Veterinary Ambulance, Temerin, Serbia

³University of Zagreb, Faculty of Veterinary Medicine, Croatia

The protein substitutes and pollen supplements, including several home-made and commercial candies with additives (poly- and oligosaccharides) are used in beekeeping operations to supplement honey bee colonies in early summer and during the lack of natural sources in late summer. In order to assess immunological changes and physiological properties, we will establish series of experiments to feed spring and summer worker bees of known age with different candies in cages. Besides, survival and consumption, the weight of head (food glands development) and histological changes will be conducted. We will collect haemolymph and analyse protein and sugar contents. Our previous trials with syrups and sugar candies that were fed same-aged bees resulted in different effects on worker physiology and survival. We hypothesize that the addition of pollen protein in bee feed can increase immunity parameters and survival in caged bees. However, the additives could affect the bees' physiological status and/or shape immunological responses differently concerning the age and tasks of bees. From this aspect we aim to find differences in groups of mixed-aged bees in comparison to same-aged bees in laboratory conditions.

PP-070

Analysis of Slovak population of Carniolan honeybee by whole-genome sequencing technology

Ľubica Baťová¹, Jaroslav Gasper², Robert Chlebo³, Radovan Kasarda³, Nina Moravčíková³, Radoslav Židek²

¹National and Agricultural Food Centre, Research Institute for Animal Production Nitra, Institute of Apiculture, Liptovský Hrádok, Slovakia

²Slovak University of Agriculture in Nitra, Slovakia

The Carniolan honeybee is considered to be an Indigenous Slovak subspecies with original range of distribution covering southeastern Alps, the northern Balkans and the Danube basin. For a comprehensive assessment of genetic diversity, sampling was carried out in 7 approved breeding stations in Slovakia and one isolated feral colony without human intervention. The Slovak population of the Carniolan bee has been studied only via microsatellites or morphometric methods, whole-genome sequencing technology aligned to the reference A. mellifera carnica is used for the first time here. Analysis of structural variants (SVs) and subsequent analysis of their density distribution described per individual chromosomes was performed in BreakDancer 1.4.4. Copy-number variation was calculated for all lines in CNVnator V0.3 and annotated in ANNOVAR. The results of the analysis of genome-wide variance showed that one of the studied lines (H8-D4) showed a major difference in the region of chromosome 11 in which mainly in the LOC242387 region there were major differences in the formation of variability compared to other lines studied in Slovakia. The identified variable region shows variability in the gene Romboid, which acts as a membrane receptor probably responsible for social behaviour. Study results supplant the Slovak Programme Integrated Innovation and Integrated Programme Smart farming systems taking into account the future challenges 313011W112, cofinanced by the European Regional Development Fund.
Benefits and functions of the bee gut microbiome

Waldan Kwong
Instituto Gubemkian De Ciencia

Social bees, including honey bees and bumble bees, harbour a highly specialized and conserved gut microbial community. Over the past 10 years, we have been working to discover the composition, function, and benefits to the host of these microbes. Here, we will highlight previous milestones in this work, and outline future directions where we are taking this new model system. I will describe projects currently underway that use cutting-edge “omics” technologies to probe the relationship between bees and their microbes. For instance, we are using proteomics to identify secreted proteins of the bee microbiome which may be involved in mediating bacterial interactions. We will also perform single-cell transcriptomics to identify the cell types in the bee gut and to characterize the types that respond to the presence of the microbiome. I will also outline how our work integrates findings across scales, to understand not only the mechanistic basis of microbial interactions, but also how they evolve and vary across host populations, by using metagenomics approaches to both taxonomically and functionally describe the composition of the gut microbiome.

Foraging activities of stingless bee, Tetragonula pagdeni on rose flower, Rosa damascena Mill

Precha Naithongkri, Orawan Duangpakhiea
Native Honeybee and Pollinator Research Center, King Mongkut’s University of Technology Thonburi, Rachchaburi Campus, Bangkok, Thailand

As demand for stingless bee honey is increasing, meliponiculture is getting more interest. The availability of nectar and pollen resources has been considered as one of key factor of meliponiculture success. Here we present the foraging behaviour of Tetragonula pagdeni on rose, Rosa damascena as a potential floral resources. The number of forager bees leaving from and returning to the colonies were recorded from 06:00-17:00 h. Observations of forager activity were recorded from the areas planted. Five x 1 m2 quadrates of 3 orchards were sampled and the number of foragers counted for 1 min, at 15 min intervals, from 06:00-17.00 h. Quadrates were randomly selected for each observation interval. T. pagdeni foragers became active around 06:15 h at rose flowers. Flight activity reach peaked between 07:30-08:00 h and continued foraging but at a lower rate. The mean number of foragers was 9 ±8.50 individuals m2 quadrate per 15 min observation interval period with a range of 0-21 individuals. However, there was gradually decreased in the number of honeybees in the afternoon, this was significantly different. T. pagdeni forager only active on R. damascena in morning and far fewer forager bees visited flower after 12.00 hr of the day. The use of Rosa damascena for landscape design for meliponiculture has suggested and discussed.

Complete mitochondrial genome of Carniolan honeybee (Apis mellifera carnica) from Slovenia and insight into phylogenetic relationships based on complete mitochondrial sequences

Aida Mašček1, Andža Mistrč, Polonca Ferč2, Brane Leskošek2, Janez Prešern1
1Agricultural Institute of Slovenia, Slovenia
2Faculty of Medicine, Institute for Biostatistics and Medical Informatics/Centre ELIXIR-SI, University of Ljubljana, Ljubljana, Slovenia

Apis mellifera carnica, the Carniolan honeybee, is native to southern Central Europe and parts of the Balkans, with the locus classicus in Slovenia. It is also widely popular with beekeepers in parts of Central and Northern Europe and other parts of the world, including the USA, Canada, and New Zealand. In Slovenia, A. m. carnica is protected by measures to conserve the subspecies’ autarchonomic domestic population in place.

We sequenced and annotated the complete mitochondrial genome of a specimen from Slovenia. The complete mitochondrial genome was acquired in two contigs from WGS data and annotated. The newly obtained mitochondrial genome is a circular closed loop of 16,447 bp. It comprises 37 genes (13 protein coding genes, 22 tRNA genes, and 2 rRNA genes) and an A+T-rich control region. The order of the tRNA genes resembles the order characteristic of A. mellifera. This is the first completely covered mitogenomic sequence obtained from a specimen from the native Carniolan honeybee area, where the Apis mellifera carnica population is legally protected, and measures are applied to minimise the anthropogenic

gene flow of this subspecies from abroad, as well as the presence of hybrids and non-native subspecies. The sequence was deposited into GenBank repository under accession number MW811775 and included into NCBI Reference Sequence database (RefSeq) under the accession number NC_001380.1. The comparison with previously published sample of A. m. carnica from Austria and the closely related Italian honeybee A. m. ligustica show several features unique to the new mitochondrial genome. We also analyzed phylogenetic relationship between our sequence and other publicly available A. mellifera mitochondrial sequences. The acquired placement of the A. m. carnica from Slovenia on the phylogenetic tree deviates from the expected position and brings new evidence for close relationships among C and O lineages and reflects their recent historical matrilineal ancestry. Such genomic information is essential for this local subspecies’ conservation and preservation as well as its future breeding and selection.

Attraction of primary and secondary swarms by spray and cream applications of advanced attractive lures

Alexandros Papachristoforou1, Leonidas Charistos2, Eni Hagia2
1School of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki
2Department of Apiculture, Institute of Animal Science, Ellinikos Georgikos Organismos ‘DIMTRIA’, Nea Moudania, 63 200 Greece

Swarming control is a topic of major importance for beekeepers worldwide. Many techniques and manipulations have been applied for the limitation of swarming tendencies by colonies and, more importantly, for attracting and catching swarms after their departure from an apiary.

In order to test different modes of application for swarm attractants, experiments were contacted in Spring 2022 at the area of Chatikli, Greece. An apiary of 90 healthy colonies, placed in 3 rows of 30 colonies each was used. For the attraction of swarms, three different products were prepared by the beekeeping unit of the Institute, 1. A jell (J) and two different sprays (S and SD). All applications contained a blend consisted of 18.75% mg of gelacic acid, 28.75 mL of citral, 25 mL of geraniol and 12.5 mL of rose oil, diluted in 26.25 mL of pure ethanol. The SD spray contained the double dose of the blend. The products were conducted in 3 pots of 2m placed in front of each row of colonies (total of 9 pots at the apiary). Additionally, empty hives were placed also at the base of each pole, containing each attractant and an empty frame. The same number of empty hives and poles without lures (control) were also placed in front of colonies rows.

A total of 81 swarms departed, consisted of 46 primary and 35 secondary swarms. Lures attracted a total of 75 swarms (93.83%) while only 5 swarms (6.17%) were found in control positions. The jell application was the most effective with a total of 69.13% attraction, followed by the double-dose spray (14.81%) and single-dose spray (9.87%). The jell also attracted significantly more primary and secondary swarms (80.43% and 54.28%, respectively). Trials showed that tested lures were very effective on attracting bees.
Breeding and Selection of Local Carniolan Manzala honeybee (Apis mellifera carnica) in respect to hygienic Abstract: ctHoneybee diseases are particularly important problem for beekeeping. Hygienic behavior (HB) of the honey bees is considered to be a potential characteristic associated with resistance to bee disease and many pathogens. With the present study, artificial selection for HB of honeybees of Manzala, Meet Salseel and Al-gamaile districts in Dakahlyia governorate of Egypt was carried out. To determine the performance of HB of the bees in Manzala, Meet Salseel and Al-gamaile districts, pin-killing method was used for evaluation of the hygienic behavior of bees applied to 27 colonies. Observation were made of each of the following characters: number of capped cells, empty cell, punctured cells, uncapped cells, cells with brood partially removed. The frequencies of the various sequences of the characters were calculated for the hygienic colonies and non-hygienic colonies. According to the results, HB of these colonies were detected in 6, 12 and 24 h. The best performance in the HB of three colonies was observed and they were selected breeder queen for artificial insemination and natural mated. The results of this study Concerning the other 12 h after perforation the highest value (83.6) was found in colonies headed by queen produced Artificial insemination (second hybrid Mq carnianl queen from Manzala +Nd carnianlon drone from New valley). on the other hand, the lowest value (47.50) was found in local carniolan from New valley.

Hygiene of hive and beekeeper equipment, fight against varroa, support to increase productivity by improving queen bee and its colony and sharing our field studies with the participants in comparison with relevant international publications

Ahmet Emre Alp, Abd El Noneim Mohamed Elhefny, Mohamed Wagdy Alkordy, Adel Diab Mohamed
Plant Protection college Agriculture, Al-Azhar University

Breeding and Selection of Local Carniolan Manzala honeybee (Apis mellifera carnica) in respect to hygienic

cthoneybee diseases are particularly important problem for beekeeping. Hygienic behavior (HB) of the honey bees is considered to be a potential characteristic associated with resistance to bee disease and many pathogens. With the present study, artificial selection for HB of honeybees of Manzala, Meet Salseel and Al-gamaile districts in Dakahlyia governorate of Egypt was carried out. To determine the performance of HB of the bees in Manzala, Meet Salseel and Al-gamaile districts, pin-killing method was used for evaluation of the hygienic behavior of bees applied to 27 colonies. Observation were made of each of the following characters: number of capped cells, empty cell, punctured cells, uncapped cells, cells with brood partially removed. The frequencies of the various sequences of the characters were calculated for the hygienic colonies and non-hygienic colonies. According to the results, HB of these colonies were detected in 6, 12 and 24 h. The best performance in the HB of three colonies was observed and they were selected breeder queen for artificial insemination and natural mated. The results of this study Concerning the other 12 h after perforation the highest value (83.6) was found in colonies headed by queen produced Artificial insemination (second hybrid Mq carnianl queen from Manzala +Nd carnianlon drone from New valley). on the other hand, the lowest value (47.50) was found in local carniolan from New valley.

Hygiene of hive and beekeeper equipment, fight against varroa, support to increase productivity by improving queen bee and its colony and sharing our field studies with the participants in comparison with relevant international publications

Ahmet Emre Alp, Hızır İlyas Turna, Musa Hamarat
Beykoz Kimya Sanayi Anonim Şirketi, Istanbul, Turkey

First Part
Preventing colony losses and hive abandonment due to environmental factors threatening bee health, ensuring hygiene of honey, hive and beekeeping equipment, product studies, field applications of products and sharing comparative results with international publications.

Second Part
Varroa causes colony losses, therefore it increases the financial losses of investors and plays a role as a worrying factor in investments in beekeeping. It reduces the economic value of colony and bee products, which are exposed to the effects of chemicals used for precautionary purposes and their residues.

We will share field applications of Varroa control products and sharing comparative results with international publications with our participants in order to support organic beekeeping, prevent producer losses and ensure consumer safety.

Third Part
Sharing the comparative results with our participants with product studies, field applications and international publications used to increase the development of the queen bee and its support to the colony, to support the increase of bee brood, to increase the development of the colony, to increase immunity against diseases and to increase the life of the bee.

Generating Brood In Every Month

Hossein Aparides Yeganehrad, 1Mackenzie Nielsen, 2Zahra Azarae, 3Pyooysh Pish Bahar, 4Mamoud Kialojouri, 5Amir Sharbati
1Mackenzie Nielsen
2Hossein Yeganehrad
3Zahra Azarae
4Pyooysh Pish Bahar
5Mamoud Kialojouri
6Amir Sharbati

Brood production is directly related to the level of nectar and pollen that bees are scavenging and bringing into the hive. Even if pollen and capped honey is stored in the hive, bees will not consume it if they cannot find any in their environment. We have to be sure they can either source those nutrients or we have to provide it artificially. Bees require the Pheromones from the queen laying eggs to begin consuming their nutrients, however, the queen will not lay eggs unless the hive has a surplus of their nutritional requirements to continue to support the egg production. If there is no pollen consumption, the bees stop producing royal jelly from their mandibular glands, and then the queen stops laying eggs, and then the eggs stop releasing Pheromones, and the Pheromones stop signaling the bees to consume more pollen. By supplementing the bees with pheromones, we can ensure they are consistently producing brood in every single month of the season. As a result, continuation of the brood production at end of the season will ensure young bees in the colony and will ensure higher survival rates in a cold winter or dry summer. This will consistently maintaining the health and population of the hives.
PP-118 [Bee Health]

COLOSS 3.0: A Platform For Global Collaboration in Honey bee Science

Maria Bouga1, Robert Brodschneider2, Norman Carreck3, Panuwan Chantawannakul4, Raffaele Dall'olio5, Vincent Dietemann6, Lotta Fabricius Kristiansen7, Anna Gajda8, Alex Gregor9, Daniela Laurino10, Peter Neumann11, Ali Özkoç12, Christian Ww Pirik13, Victoria Soroker14, Geoffrey Williams15

1Lab of Agricultural Zoology & Entomology, Agricultural University of Athens, Athens, Greece
2University of Graz, Institute of Biology, Graz, Austria.
3Carreck Consultancy Ltd., Woodside Cottage, Shipley, RH13 8GD, UK and Laboratory of Apiculture and Social Insects, University of Sussex, BN1 9QG, UK
4Bee Protection Center, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
5BeeSources - beekeeping consultancy, Bologna, Italy
6Swiss Bee Research Center, Aroscope, Bern, Switzerland and Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
7Radbüh–National Competence Centre for Advisory Services Swiss University of Agricultural Sciences, Sweden
8Laboratory of Bee Diseases, Institute of Veterinary Medicine, Swedish University of Pathology and Veterinary Diagnostics, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
9University of Maribor, Faculty of Agriculture and Life Sciences, Slovenia.
10Spain
11Institute of Bee Health, Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland.
12Department of Biology, Faculty of Science, Hacetteppe University, Ankara, Turkey
13Social Insects Research Group (SIRG), Department of Zoology & Entomology, and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20 Hatfield 0028, Pretoria, Republic of South Africa
14Laboratory of honey bee health, Institute of Plant Protection, Agricultural Research Organization ARO, Israel
15Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA

COLOSS (prevention of honey bee COlony LOSsies) is a non-profit association of scientific professionals dedicated to high quality of honey bee research and extension activities worldwide with the goal to improve the well-being of these pollinators. All researchers who support and work towards the missions of honey bee research, a new chapter on pollinators. All researchers who support and work towards the missions of COLOSS who are welcome to join the network. Due to a novel grant scheme, our association can now implement new activities and strengthen ongoing ones. These new activities include the creation of new Task Forces aiming at addressing the role of nutrition in bee health and at the mapping of honey bee diseases worldwide. As part of the continued effort to standardize nosemosis research, a new chapter on the invasive wasps Vespa velutina will soon complete the BEEBOOK and previous chapters are being updated. Moreover, a fourth Volume of the BEEBOOK on “Standard methods for Apis cerana rearing” has also been initiated. Our organization, through its outreach activities, has recently substantially been strengthened. In particular, fostering local activities, regular annual meetings in each member continent will supplement our annual general conference. These will be in addition to the regular and well attended COLOSS workshops and seminars. To further foster our global networking via participation at events, COLOSS travel or project awards will be bestowed each year primarily to early stage researchers, based on scientific excellence of the applicants. An overview on recent developments including a COLOSS excellence award and network broadening will be given to further improve bee science and solutions in apiculture practices globally.

PP-085 [Bee Health]

Prevalence of Nosema species infections in managed honey bees Apis mellifera in Northern provinces of Iran

Sahel Molaei Baghal1, Seyed Reza Miraei Ashhtiani2, Mostafa Sadeghi3, Sedigheh Nabavvand1, Alireza Araghi4, Zarah Kiani5

1Department of Animal Science, University of Tehran, Karaj, Iran
2Department of Parasitology, University of Tehran, Tehran, Iran

Nosemosis caused by the microsporidian parasites as Nosema apis and Nosema ceranae which is one of the most common diseases and has been associated with colony losses in several studies. It also has been considered as an important factor for high rate of colony losses in north area of Iran.

A total of 428 colonies from 97 apiaries located in north region of Iran were sampled during the September-January 2021 to monitor the prevalence of nosemosis on managed honey bee colonies. In each apiary, a minimum of five colonies were randomly sampled. Each sample includes 100 adult bee which examined by microscopic and molecular methods to detect the presence of Nosema spore. Each sample includes 100 adult bees examined by microscopic and polymerase chain reaction (PCR) methods to detect the presence of Nosema spore. In order to estimation of infection intensity, spores were counted in positive samples by hemocytometer, and to estimate the intensity of infection by estimating spore counts in positive samples. The results of the microscopic examinations showed that 66% of apiaries were infected with Nosema apis. Based on the results, Nosema was detected in 173 (38.02%) of sampled colonies. The result of molecular and morphological methods showed that all positive samples were infected with Nosema ceranae that coincided with previous reports. It seems that N. ceranae has an important economic role in the occurrence of colony losses and decreased production for beekeepers.

PP-008 [Bee Health]

Potential treatment from natural sources against nosemosis

Elodie Pegaire1, Pascal Goupil1, Claire Richard2, Mohamad Sleiman3, Ayhan Kocer4, Iliham El Alagui5

1Université Clermont Auvergne, UMR INRAE 547-PIAF, Clermont-Ferrand, France
2Université Clermont Auvergne, UMR CNRS 6296 ICCF, Clermont-Ferrand, France
3Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
4Department of Animal Science, University of Tehran, Karaj, Iran
5Department of Parasitology, University of Tehran, Tehran, Iran

Honey bees (Apis mellifera), the most economically important pollinators, have been affected by the global decline in pollinator populations. Honey bee colonies have experienced a decrease in colony productivity and survival rates, which is linked to reduced colony size and population density. The global decline in honey bee colonies has been linked to a variety of factors, including habitat loss, pesticide exposure, the spread of diseases, and climate change. In recent decades, it has been reported that honey bee colonies have declined significantly in Europe and the United States. This decline is of increasing concern because of the critical role that honeybees play in maintaining agricultural production and food security. Honey bees are essential for pollination of many crops and have a significant economic value.

The use of natural products as a potential treatment for nosemosis is an attractive option due to their low toxicity and the absence of resistance development. The use of natural products against nosemosis has been tested in several studies, and some compounds have shown promise in reducing Nosema infections in honey bees. For example, the use of propolis and propolis derivatives has been shown to have anti-Nosema effects, and other natural products, such as essential oils and plant extracts, have also shown potential in reducing Nosema infections.

Natural products have the potential to be used as an alternative to synthetic chemicals for the treatment of nosemosis in honey bees. However, further research is needed to identify the most effective and safe natural products for use in the treatment of nosemosis in honey bees.
Effect of high protein diet on the develop of the hive and the honey production in warm and cold climates

Pedro Díaz Molina1, Antonio Martínez Mateo1, Alejandro Giménez Cano1, José Serrano Marino2

1Zúñi, S.L.
2University of Murcia

The aim of this study was to compare the effect of feeding with 15% of protein on the weight of hive and the honey production in warm and cold climates.

The experimental study was carried out in two locations in Spain, Murcia (warm climate) and Soria (cold climate) from November 2019 to August 2020. Average temperature ranged between 18.2-17.9 °C in Soria and 11.7-24.7 °C in Murcia. Twenty hives were randomly placed in each climate; control group without feeding was made up by 8 hives whereas feeding group included 12 hives. These were fed with sugar paste, 15% protein (yeast) and vitamins (B1, B2, B3, B4, B5, B6, C and K) from 27th November 2019 to stimulation time, two weeks before flowering. Stimulation during 2 weeks and using 2 kg ApiMix® per hive, started on 11th February 2020 in warm climate and 21st March 2020 in cold climate. All hives were weighed before and after feeding and honey of each group was weighed after extraction. Consumption of total protein was lower in warm climate (899 g) than in cold climate (2810 g), because of the flowering was later and the feeding time was longer in cold climate. The protein consumption/hive/week was higher in cold climate (112 g) than in warm climate (79 g) possibly by the same reason. After the feeding time, the weight of hives fed with high protein diet increased (0.02 kg) while the weight of control group decreased (4.88 kg) in cold climate. However, the weight of fed hives in warm climate decreased 2.15 kg although the decrease was less than in control group (4.92 kg). The control group didn’t increase (1.02 kg) while the weight of control group decreased (4.98 kg) in cold climate. However, the weight of fed hives in cold climate was higher; while there weren’t significant differences between groups in the warm climate. In conclusion, the high protein diet is more effective in cold climate where the natural feeding is limited during long time due to harsh weather conditions.

Real-time monitoring of radioactive contamination of the environment through a complex system of interconnection between an intelligent device for detecting ionizing radiation and bees as biological sensors of environmental pollution

Savu Vasile1, Sacapu Agripina1, Pantelimonescu Gheorghe2, Buzea Calin2, Tapaloaga Dana2, Badic Luiza4
1Beekeeping Research and Development Institute, 013975 Bucharest, Romania
2National Institute of Research and Development for Technical Physics, Iasi, Romania
3University of Agronomic Sciences and Veterinary Medicine Bucharest, Bucharest, Romania
4Spiru Haret University, Bucharest, Romania

The aim of this work was to design an intelligent, energy-efficient radioactive particle detector that interconnects silicon sensors and computer networks that process information about the presence and nature of ionizing radiation and send alert messages in the event of radioactive contamination with domestic bees as biosensors of environmental pollution, as future solutions based on artificial intelligence for environmental protection. The intelligent radioactive particle detector contains a local network of computers with ionizing radiation sensors (GM and SPMM), a weather micro-station module used to estimate the direction of movement of radioactive particles, a GPS module used to obtain information about the geographical location of the detector, a GSM module used to transmit alert messages in case of radioactive danger, a photovoltaic power supply module used to ensure energy autonomy. The local computer network is based on embedded Linux machine with ARM processors. Bees, as biological sensors of environmental contamination, are spread over large geographical areas, in 20-frames (440 x 340 mm) Layens hives and with a bee population of over 70,000 individuals. This work was supported by a grant of the Romanian Ministry of Research and Innovation, CCCI – UEFISCDI, project number 471/2020, within PNCDI III.

Prevalence and pathogen detection of Varroa and Tropilaelaps mites in Apis mellifera (Hymenoptera, Apidae) apiaries in South Korea

Yun Sang Cho1, A Tai Tuong2, Mi Sun Yoo1, Bo Ram Yun1, Jeong Eun Kang1, Jinhyeong Noh1, Tae Jun Hwang1, Soo Kyoung Seo1, Soon Seek Yoon1
1Parasitic and Honey Bee Disease Laboratory, Bacterial and Parasitic Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
2Parasitic and Honey Bee Disease Laboratory, Bacterial and Parasitic Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea; Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen, Vietnam

The honey bee is an important pollinator of wild plants and crops and provides various useful products for humans. Infestations by honey bee mites damage the honey bees’ health, decrease their lifespan, and increase their viral susceptibility. In this study, surveys were conducted throughout South Korea in 2019 to investigate the status of honey bee mite infestation. Mite samples were collected for species identification, and estimation of infestation levels from 47 apiaries in 12 regions was conducted. Mite species were identified by morphological characteristics and genetic analysis using cytochrome c oxidase subunit I (COXI). The results showed that 93.6% of the apiaries were infested by honey bee mites, of which 85.1% and 76.6% of the apiaries were infested by Varroa spp. and Tropilaelaps spp., respectively. Furthermore, 68.0% were co-infested by both honey bee mites. Additionally, 82.5% of the apiaries with Varroa spp. showed infestation rate with >3 mites per 100 bees, the infestation level could result in winter losses of honey bee colonies. Species identification revealed that all mites from the apiaries in South Korea were Varroa destructor and Tropilaelaps mercedesae. Importantly, these two mite species were determined to be vectors of one to nine honey bee pathogens in real-time polymerase chain reaction detection. The most prevalent pathogen was the deformed wing virus, followed by the Israeli acute paralysis virus and chronic bee paralysis virus. The results of the surveys are important for estimating the economic losses caused by honey bee mites and establishing a possible strategy for controlling mites and mite-borne transmissible pathogens in South Korea.

Prevalence of honey bee pathogens and parasites in South Korea: A five-year surveillance study from 2017 to 2021

Yun Sang Cho1, A Tai Tuong2, Mi Sun Yoo1, Soo Kyoung Seo1, Tae Jun Hwang1, Soon Seek Yoon1
1Parasitic and Honey Bee Disease Laboratory, Bacterial and Parasitic Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
2Parasitic and Honey Bee Disease Laboratory, Bacterial and Parasitic Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea; Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen, Vietnam

Honey bees play an important role in the pollination of crops and wild plants and provide important products to humans. Protecting honey bee colonies from parasites and pathogens is of great concern for researchers and beekeepers. A nationwide monitoring of 14 honey bee pathogens, including parasites (phorid flies, Nosema ceranae, and Acarapis woodi mites), viruses, bacteria, and fungal pathogens, were conducted from 2017 to 2021 in South Korea. The infection rate and the trend of development of each pathogenic agent were determined. A total of 830 honey bee samples from Apis cerana (n = 357) and A. mellifera (n = 473) were examined. N. ceranae (35.53%) deformed wing virus (52.63%), sacbrood virus (SBV) (52.63%), and black queen cell virus (55.26%) were the most prevalent honey bee pathogens, and their prevalences rapidly increased from 2017-2021. The prevalence of Paenibacillus larvae, Israeli acute paralysis virus, Ascosphaera apis, A. woodi, Melissococcus plutonius, and chronic bee paralysis virus remained stable during the surveillance period, with infection rates ranging from 5.26% to 16.45% in 2021. Other pathogens, including acute bee paralysis virus, phorid flies, Kashmir bee virus (KBV), and Aspergillus flavus had low infection rates that gradually declined during the detection period. Of these, only A. flavus and KBV were detected in 2021, with infection rates of 0.66%. The development of honey bee pathogens peaked in July. SBV was the most common pathogen in A. cerana whereas N. ceranae was predominant in A. mellifera. This study provides information regarding the current status of honey bee pathogens and presents the trend of the development of each pathogen in South Korea. These data are important for predicting outbreaks of honey bee diseases in South Korea.
Examination of Varroa destructor and Nosema spp. along with the detection of ABPV, CBPV and DWV-A in honeybees lost during the winter season 2020/2021 in Slovakia

Miriam Filipova1, Milan Rusnak2
1Department of Molecular Biology and Epizoology, State Veterinary and Food Institute, Dolny Kubin, Slovakia
2Slovak Beekeepers Association, Bratislava, Slovakia

Examination of Varroa destructor and Nosema spp. along with the detection of ABPV, CBPV and DWV-A in honeybees lost during the winter season 2020/2021 in Slovakia Filipova M., State Veterinary and Food Institute, Slovak Beekeepers Association. The main goal of this study was to determine the range of infestation or infection in dead bees by five selected pathogens and to consider how much the obtained results contributed to the bee loss.

The Slovak beekeepers, who recognized large mortality or high weakness in their apiaries during the season 2020/2021, had possibility on voluntary basis to participate in presented study. Parasitic mite Varroa destructor and microsporidia Nosema spp. were examined by macroscopic and microscopic method respectively. Beside of them, presence of three bee viruses (ABPV, CBPV and DWV-A) was verified using semiquantitative real-time RT-PCR and the incidence of which were expressed as negative or high (+++), mid (++), and low (+) positive. Sampling was done by beekeepers themselves with exact instructions from concerned diagnostic laboratory. For investigation, defined number of honeybees together with winter debris was required to be sent. In case of loss of more than one beehive per apiary the mixed sample was prepared (with the maximum of 25 beeheives per sample).

Totally 50 beekeepers from different regions of Slovakia participated in this study. The mortality rate in their apiaries ranged from 7.41 to 100 %. V. destructor mite was presented in small or high numbers depending on whether or not the treatment was performed in the end of year. Spores of Nosema spp. were found in 25 samples. Regarding the viruses, ABPV was more frequently detected and in higher levels than CBPV (34, 20, 6 vs. 4, 5, 10 for high, mid and low level of positivity). Apart from it, DWV-A was absent in almost all samples. Two samples did not possess neither Nosema spp. spores nor RNA of tested viruses. The simultaneous presence of all searched pathogens occurred in one sample. The study will go on in the future and the goals will be supplemented by species discrimination of Nosema spp. together with DWV-B detection.

Investigation of Parasitic Diseases of Honeybees in Marmara Region of Turkey

Taraneh Öncel, Mesut Şenel, Hasan Hüseyin Ünal
Parasitology Laboratory, Pendik Veterinary Control Institute, Istanbul, Turkey

Honeybees are important for the development and maintenance of natural ecosystems in all of the countries. The aim of this study was to investigate parasitic diseases of Honeybees in Marmara Region of Turkey. Marmara is a region in northwest Turkey that connect Europe and Asia across the sea of Marmara. Varroasis and Nosemosis are huge factors in declining honeybee health and cause major losses to the beekeeping sector in this region.

Bee materials used in this study was selected from the samples submitted to Pendik Veterinary Control Institute. A total of 83 samples of dead bees were examined for parasitological analysis in Parasitology Laboratory. Varroasis and Nosemosis were detected in 49.39% and 30.12% of samples respectively. No Aethina tumida and Acarapis woodi were found in these samples.

Results of our study showed that Varroasis and Nosemosis are widely present in honeybees in this region. Diagnosis of these infections as early as possible and taking immediate action is a great importance for development of control strategies. In our opinions more field study and laboratory examination is still needed to clarify the status of honeybees parasitic infection in this region.
compounds. Hives commonly contained one to four pesticides, with a range from zero to 19. By country, significant differences were found both between apiaries and over time. On average, 63% of the compounds were authorized, but 37% were unauthorized. This may have been due to unapproved use, but contamination of bee wax was also detected. Furthermore, the soil is a large archive of pesticides, and due to land disturbance, these compounds can be spread and released in spatiotemporal patterns that could be the shift of natural ecosystems collection, or define. All this was recorded in the hive, and in eight of the nine countries, the most common compound was a varroacide.

Pollen was trapped for one day every two weeks, and was molecularly identified to family. The four most common families were identified in the nine countries, together with 10 to 19 less important families which changed over time. The pesticide and pollen data, collected with Corine land use data and pan European weather reports were the input for a random forest model to predict exposure risks for pesticides and pollen diversity both spatially and temporally.

INSIGNIA-bee is being followed by INISIGNA-EU which started in December 2021. In this new project the targets are not only pesticides, but also: microplastics, and the accumulation of VOCs, and heavy metals. Its outcome will provide the first standardized EU-wide monitoring of environmental pollutants using honey bee colonies, achieved through a pan European network of beekeepers, sampling their colonies and making it valuable contributing to science.

The INISIGNIA-bee guideline, together with scientific and popular articles and notes is available on the Insignia website www.insignia-bee.eu.

PP-100 [Bee Health]

Education Of Beekeepers For The Control Of Varroasis In Marmara Region Of Turkey

Mesut Senel1, Tanaréh Oncel2, Hasan Hüseyin Ünal3

Parasitology laboratory, Pendik Veterinary Control Institute, Istanbul, TURKEY

Varroasis is considered to be one of the most common and dangerous diseases of honeybees in many parts of the world. Varroa is ectoparasites that feed on the hemolymph of immature and adult honeybees. Affected bees suffer reduced lifespan, impaired flight and navigation ability, and failure to return to the hive. One of the serious problems caused by Varroa is the transmission of viruses to honeybees that cause deadly diseases. Varroa mites cause significant damage on bee health, production of bee products, and pollination of plants.

Creating education and awareness activities is an important step in the development of beekeeping. In order to develop a better strategy for controlling of this parasite we organized education activities for the beekeepers with support of beekeepers association and also relevant regional veterinarians in 12 cities (Balikesir, Bilecik, Bursa, Çanakkale, Düzce, Edirne, Istanbul, Kırklareli, Kocaeli, Sakarya, Tekirdağ, Yalova) in Marmara Region of Turkey in 2020. Detailed information about the biology of the Varroa mite was given and correct drug application at the right time was strengthening held. Effective varroasis control programs and collective struggle were explained and problems of beekeepers were discussed.

In conclusion it is important that these education activities should develop skills and knowledge to manage honeybees effectively. We emphasized that these education activities were very beneficial for the beekeepers and further studies are needed for control of varroasis in this region.

PP-102 [Bee Health]

MEDITEBEE: Monitoring the Mediterranean honeybee subspecies and their resilience to climate change for the improvement of sustainable agro-ecosystems

Raquel Martin Hernández1, Antonio Nanetti2, M. Alice Pinto3, Mustafa Necati Muz4, Nizar Haddad5, Chadi Hossi6, Noureddine Adjlane7, Ahmad Yousef Daour8, MEDIBEES Consortium1

1Instituto de Investigación Apícola y Agroambiental de Marchamalo (CIAPA-IRIAF), PCTCLM-INCRECYT (co funded ESF/FSE); Marchamalo, Spain
2Centro di Ricerca Agricoltura e Ambiente, Consiglio per la Ricerca in Agricoltura e Ambiente, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA); Bologna, Italy
3Centro di Ricerca Agricoltura e Ambiente, Consiglio per la Ricerca in Agricoltura e Ambiente, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA); Bologna, Italy
4Centro di Ricerca Agricoltura e Ambiente, Consiglio per la Ricerca in Agricoltura e Ambiente, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA); Bologna, Italy
5Lebanese University, Faculty of Agriculture (UL); Beirut, Lebanon
6University of Namik Kemal (UNK), Faculty of Veterinary Medicine; Tekirdağ, Turkey
7Centro Nacional de Investigación y Desarrollo Agropecuario (CENIKA); Mar del Plata, Argentina
8University of Málaga, Department of Physiology and Biochemistry (UM); Málaga, Spain

Globally honeybees are threatened by a plethora of biotic and abiotic stressors. One factor of great concern is climate change and its direct impact on wild and agricultural ecosystems. Indeed beekeeping, with its symbiotic interdependence with vegetation, is an industry that will be strongly affected by climate change. Although the Mediterranean is a region that is highly vulnerable to climate change, no study has comprehensively analysed the possible effects on honeybees. The MEDITEBEE project aims to remedy this situation by studying the honey bee subspecies native to the Mediterranean region and their resilience to climate change, in an attempt to safeguard the beekeeping sector. In this framework, the following approaches were adopted to determine the common Practices, Challenges and Problems in the region and to identify scientific gaps and solutions expected by beekeepers:

- Review of the effects of biotic and abiotic stressors on honeybee colonies as well as legislation in the MEDITEBEE consortium to identify common threats.
- Study of priority areas considered by beekeepers as important to survive as an industry, beekeeping practices and existing resources in each country to determine common trends and challenges across the Mediterranean.
- Analysis of the responses to a questionnaire distributed among 1160 beekeepers to obtain information on stakeholder practices, challenges faced and the main problems encountered.

In this way, a profile of beekeeping activity and beekeepers in the region was obtained. The main challenges and problems identified were: a) changes in weather patterns that could affect colony dynamics, production losses and increasing mortality; b) of incidence of the bee (Forno de destructum) and the lack of training programs to control them; c) agricultural insecticides and acaricides as main area of interest, beekeepers pointed out the possible existence of adapted ecotypes, the need for training to distinguish between hybrids and purebreds, and the study of diversity to understand the climate change will have on the phenology and plant availability and on changes in the distribution areas of pathogens in the region.

This project is part of the PRIMA programme supported by the European Union.

PP-103 [Bee Health]

Main Practices, Challenges and Expected solution identified in the Mediterranean Beekeeping Industry (MEDITEBEE project)

Marion Zammit Mangion1, Dylan Farrugia1, Raquel Martin Hernández2, Antonio Nanetti3, M. Alice Pinto4, Mustafa Necati Muz4, Nizar Haddad5, Chadi Hossi6, Noureddine Adjlane7, Ahmad Yousef Daour8, MEDIBEES Consortium1

1University of Malta, Department of Physiology and Biochemistry (UM); Málaga, Malta
2Centro de Investigación Apícola y Agroambiental de Marchamalo (CIAPA-IRIAF), PCTCLM-INCRECYT (co funded ESF/FSE); Marchamalo, Spain
3Centro de Investigación Apícola y Agroambiental de Marchamalo (CIAPA-IRIAF), PCTCLM-INCRECYT (co funded ESF/FSE); Marchamalo, Spain
4University of Málaga, Department of Physiology and Biochemistry (UM); Málaga, Spain
5Lebanese University, Faculty of Agriculture (UL); Beirut, Lebanon
6University of Namik Kemal (UNK), Faculty of Veterinary Medicine; Tekirdağ, Turkey
7National Agricultural Research Center (NARC): Amman, Jordan
8Lebanese University, Faculty of Agriculture (UL); Beirut, Lebanon
9IHA, University of Boumerdes, Faculty of Science, (UMBDE-DZ); Boumerdes, Algeria
10Jordanian Beekeepers Union (JBU); Amman, Jordan

Beekeeping provides subsistence to hundreds of thousands of beekeepers in the Mediterranean area. This activity is supported by a range of different native subspecies, adapted to highly diverse and harsh conditions of the region. Actions directed to the conservation of A. mellifera subspecies in the Mediterranean region to promote the quantity and quality of crops, increasing food availability in an efficient, cost-effective, and sustainable way. Climate change is expected to increase the stress factors affecting the bee, especially in this region, reducing both pollination efficiency and productivity. Unfortunately, our ability to tackle this problem is limited by our incomplete understanding of the natural adaptation mechanisms developed by the different subspecies, and so the basic knowledge needed for future selection programs aiming to improve bee stocks for environmental changes. The MEDITEBEE project is a collaboration between beekeepers from 7 Mediterranean countries, covering 10 local A. mellifera subspecies, which are a remarkable and poorly understood proportion of genetic diversity.

The project aims to: i) unravel the differential genetic background of the Mediterranean bee subspecies, ii) understand their adaptation mechanisms and responses to environmental conditions, and iii) characterize them through genetic tools to characterize the honey bee populations for their resilience to environmental stressors. This effort will encourage the use of local subspecies, hinder the import of foreign breeds, and establish the basis for future selection programs. Besides, the valorization of honey by both promoting its use and developing Quality labels, and the evaluation of beekeeping by-products as modifiers of soil fertility and biota are also approached to help the beekeepers improve the sustainability of their farms in an economical and environmental sound manner. This project is part of the PRIMA programme supported by the European Union.
Effectiveness of using powdered sugar to decrease varroa infestation in bee colonies

Jaroosl Gasper, Vladimir Kňazevickī, Libuše Rajčákovā
National and Agricultural Food Centre, Research Institute for Animal Production Nitra, Institute of Apiculture, Liptovský Hrádok, Slovakia

Varroa (Varroa destructor) is globally widespread with the honey bee. It seems to be the main vector of various bee diseases. Activity of varroa results in bee colony weakness and loss. Numerous methods and preparations are used for elimination of negative influence of this serious parasite. The aim of the study was to treat the bees by powdered sugar dusting and evaluate its effectiveness on varroa control in bee colonies. Totally, the experiment was performed with twelve bee colonies for three years. Bees were treated by powdered sugar two times per month during the June and July and three times per month during the August and September. After each treatment, the varroa fall was recorded. After the last treatment, values of varroa fall were counted for the whole season. In broadross period, bee colonies were treated with amitraz-based acaricide and subsequently, control evaluation of another varroa fall was recorded. Varroa fall after treating the bees by powdered sugar was compared with the value of varroa fall after fumigation by amitraz. Average effectiveness of powdered sugar was calculated on the base of results of falls. The effectiveness of the method was 14.87%, 14.17% and 32.01% during the three years of the research. The observed efficiency of this method is very low and insufficient for relevant varroa elimination in bee colonies. Based on our results, we do not recommend the assessed method to beekeepers for an effective treatment to varroa control.

Acknowledgement: Study was supported by the Operational Programme Integrated Infrastructure within the project: Sustainable smart farming systems taking into account the future challenges 313011W12, cofinanced by the European Regional Development Fund.

Comparison of Iranian, Carniolan and hybrid honeybee colonies on foraging behavior and preference of poisonous sources

Osman Raygan1, Abed Raygan2, Mohammad Raznasab2
1Department of Animal Science, Faculty of Agriculture, Urmia University, Urmia, Iran
2Raygan Bee Farm, Marivan, Kurdistan, Iran
3Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran

Popular interest in the biology of the common honey bee (Apis mellifera L.) has surged in recent years due to the stark population decline of this important pollinator. Despite the value of honey bees to the agri-food industry, their populations cope with natural- and agriculture-induced stress, resulted in recent increases in reported mortalities. While honeybees have the remarkable ability to learn to associate floral cues, like flower color and odor, with food rewards but beekeepers have long recognized that honeybees may be susceptible to some natural plant toxins. Pesticide exposure is one of the main factors that can provide a universal explanation for the apparent decline of honey bee populations. Moreover, the risk of pesticides to honey bees is especially alarming due to their long half-lives and presence in food and honey. The objective of this study was to compare the performance of Apis mellifera meda, imported Apis mellifera carnica and hybrid honeybee colonies (A. m. meda x A. m. carnica) in northwestern of Iran for detecting poisonous flowers. Study was conducted in the mountainous region of the Marivan, Kurdistan (35.7550° N, 46.5250° E). The location has an altitudinal average of 2050 m with an average annual rainfall of 800 mm. Data on foraging behavior and preference of pollen sources were collected during 2020 spring. Quality control and calculation of descriptive statistics was performed using the GLM procedure of the SAS statistical program. The results of the analysis of variance showed a significant difference between different genetic groups (p<0.05). Based on the mortality and foraging behavior analysis, Carniolan and Hybrid honey bee colonies showed better performance for detection poisonous flowers. The possible reasons for the advantage of the hybrid colonies could be due to heterosis. This study suggests that honeybees have the ability to react to toxins, but that this ability may mainly be after they have ingested the toxins. Therefore, it would be wise to design how to improve and conserve the local bees beside of focusing on crossbreeding of Apis mellifera meda drones with exotic Carniolan queens.

Beekeeping and Climate Change: Impacts and Adaptation in Chile

Martina Galan Rojas1, Ariel Muñoz2, Jonathan Banichvich2, Karin Klock Barria3, Eugenia Gayo4, Francisco Fontúrbel5, Matías Oles1, Christine Lucas1, Camilo Vez6
1Department of Geografía, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
2Centro de Ciencia del la y Resiliencia (CR3), Santiago, Chile.
3Laboratoire des Sciences du Climat et de l’Environnement (LSCE), Paris, France.
4Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
5Polo Ecología Fluvial, Departamento del Agua, CENUR Litoral Norte, Universidad de la República, Paysandu, Uruguay.
6Centro Interdisciplinario de Estudio de Territorios Litorales y Rurales, Valparaíso, Chile.

Climate change has a widespread impact on honey production in Chile. The country is going through a long drought of more than ten years that has affected much of the country, affecting vegetation vigour, nectar availability and forest ecosystem services. In Chile there are still very few studies showing the relationship between climate change and its effect on honey production over time. In this context, historical records of honey production and its relationship with precipitation and temperature variables were analysed in the Mediterranean and Temperate climate regions where most of the country’s beekeepers are concentrated. In addition, the perceptions and adaptation practices that beekeepers have implemented to mitigate the impacts of climate changes on their production were analysed through questionnaires and interviews. The results indicate a reduction in honey production over the last decade, mainly related to reduced rainfall and increased temperatures in both regions. These variations have affected the honey production of 82% of the beekeepers who participated in this study, of which 80% implemented adaptation practices. The Mediterranean region has been most affected by the drought, which has led to increased transhumance of beekeepers to the temperate region as one of the main adaptation practices. We hope this study will provide a foundation to generate actions that help beekeepers to confront multiple climate change impacts in Chile.

Natural disasters as a major driver of honey bee colony losses in Iran (2019-2020)

Seyed Reza Miraei Ashiani1, Ardestish Nejati Javaremi1, Alireza Araki2, Zahra Kiani1, Somayeh Pashania1, Reza Faraji3, Reza Bideshi4, Mohammad Hosen Naemi Nezamabad2, Hamed Nemat Nejad3, Zahra Lotf5, Farzad Beikpour2, Zahra Zarbaft5, Mohammad Reza Faranzen5
1Department of Animal Science, University of Tehran, Karaj, Iran
2Department of Veterinary Medicine, University of Bari, Italy.
3Department of Environment,Research Center for Environment and Sustainable Development,Tehran,Iran
4Department of Animal Science, University of Guilan, Rasht, Iran

The findings show that despite the increase in honey beekeepers demand (pollination services to agriculture and production of honey, pollen, royal jelly etc.), the supply capacity of this insect has decreased. Management of honey bee colony losses as a necessity can improve the mentioned gap. Natural disasters as a negligible driver is likely to impact a significant effect on occurrence of honey bee colony losses and decreased production for beekeepers. The aim of this study was to determine the rate of colony losses due to natural disaster (drought, dust storms, droughts, etc.) in Iran. A total of 1763 beekeepers with 233296 colonies participated in a cross-sectional study based on an international standard survey (COLOSS survey for colony losses). The results showed a high rate of colony losses due to natural disaster for Iran (5.9%, 95% CI:5.3-6.6). This survey revealed that larger beekeeping operations with more than 200 colonies experienced significantly lower losses due to natural disaster(ρ<0.001), suggesting that hobby beekeepers need education and training on how to be prepared for natural disasters. According to the value of the total losses due to natural disasters that was calculated as a sum of the value of the lost honey bee colonies and their production (except pollination services), economic impact of this rate of colony losses was estimated to be about $8187.

Although this rate is only for one year and has to be interpreted with caution, and colonies lost by natural disaster may have different CI (8.9-6.6) than biological causes for colony losses, but, it seems to be an alarm and need to be considered as an important factor contributing to colony losses. However, the usage of advanced technologies such as smart hives and applying pre-incident alert system might help beekeepers to relieve this issue significantly.
Preliminary results on honey bee health in the Kingdom of Saudi Arabia

Giovanni Formato1, Nuru Mohammed2, Hassan Bahreouth3, Abdullah Al Subaieu4, Kalki Ghosh5
1Apiculture Laboratory – FAO/OIE Centre at istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleanedi, Rome, Italy
2FAO-Kingdom of Saudi Arabia, Technical Co-operation Programme Strengthening MoEWa’s Capacity to implement its Sustainable Rural Agricultural Development Programme (UTF/SAU/OS/SAU)
3Ministry of Environment Water and Agriculture of Kingdom of Saudi Arabia

The FAO Saudi Arabia, in collaboration with the Ministry of Environment Water and Agriculture of Kingdom of Saudi Arabia, established a team of international and national experts with the goal to assess honeybee health in the KSA. Hive inspection visits and sampling activities were carried out in three different regions of the Kingdom: Madinah, Makkaah and Jazan. The total number of apiaries inspected was 24 (7 from Madinah, 9 from Makkaah, 8 from Jazan), that were all breeding the local autochthonous bee: Apis mellifera yemenitica. The number of adult bee samples taken was 107 (7 from Madinah, 9 from Makkaah, 8 from Jazan). Overall, 74% of the colonies were housed in traditional hives, while only 26% were kept in rational modern hives. The average mortality rate (declared by beekeepers) was 44.1%, mainly occurred from November 2011 to April 2022, highlighting the presence of health issue. The preliminary assessment indicated that the varroa management practices of beekeepers were non adequate, as 38.8% of the apiaries had too high infestation levels of the mite. In many apiaries we observed clinical signs of Nosemosis. Laboratory analysis will confirm the clinical suspicion. A quite spread use of antibiotics by beekeepers was observed in three regions as a disparate attempt to control the bee mortality. A quite strong lack of awareness was detected on the impact of the medicines used at the apiary level and on the consequences concerning safety of the bee products (residues) and on the development of antimicrobial resistance (AMR). The following recommendations were identified: to change housing of bee colonies, from traditional to rational modern hives; provide beekeepers with registered veterinary medicines against the main honey bee diseases, particularly varroa and nosema; regulate the use of imported medicines; propose alternatives to the use of antibiotics with low environmental impact medicines and training on the prevention of the diseases adopting good practices and early diagnosis methods; identify a specialized laboratory in KSA dedicated to the bees; regularly monitor prevalence and incidence of the main honey bee diseases.

The use of encapsulated essential oils against Varroa and Nosema

Leonidas Charistos, Fani Hatjina
Department of Apiculture, Institute of Animal Science, ELGO ‘DIMITRA’, Greece

Essential oils have been used against Varroa and Nosema for a long time in beekeeping. To stabilize the active compounds of the essential oils of several aromatic plants and to slowly release their desired properties a process called encapsulation was used. Using this process, the essential oils of regano, lavender, fennel and clove, in equal parts, were encapsulated in nanoparticles and they were used against Varroa and Nosema, after fed to the honey bee colonies. Initially, 40 honey bee colonies were used per treatment group as follows: 3ml and 5ml of the active mixture diluted in 100 ml of sugar solution were administered to 20 honey bee colonies by trickling (4 times in weekly intervals), 3ml of the active mixture diluted in 1L of sugar solution was provided as feed to 10 honey bee colonies and untreated sugar solution was fed to the rest 10 colonies, used as control. The first results showed that the trickling of the 3ml/100ml of syrup or the 5ml/100ml of syrup in keeping the Nosema spores per bee in low numbers, compared to feeding the mixture in feeders containing the 1L of syrup, while no effect was observed on varroa mortality. No significant difference was detected between the two above concentrations, although more experiments and repetitions are needed for secure conclusions. Lower concentrations (e.g. 2ml/100 ml of sugar solution) also used by trickling was not proved to be effective against Nosema parasite. This project has been financed by the Prefecture of West Macedonia of Greece, started in 2020.

Preliminary results on honey bee health in the Kingdom of Saudi Arabia

Giovanni Formato1, Nuru Mohammed2, Hassan Bahreouth3, Abdullah Al Subaieu4, Kalki Ghosh5
1Apiculture Laboratory – FAO/OIE Centre at istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleanedi, Rome, Italy
2FAO-Kingdom of Saudi Arabia, Technical Co-operation Programme Strengthening MoEWa’s Capacity to implement its Sustainable Rural Agricultural Development Programme (UTF/SAU/OS/SAU)
3Ministry of Environment Water and Agriculture of Kingdom of Saudi Arabia

The FAO Saudi Arabia, in collaboration with the Ministry of Environment Water and Agriculture of Kingdom of Saudi Arabia, established a team of international and national experts with the goal to assess honeybee health in the KSA. Hive inspection visits and sampling activities were carried out in three different regions of the Kingdom: Madinah, Makkaah and Jazan. The total number of apiaries inspected was 24 (7 from Madinah, 9 from Makkaah, 8 from Jazan), that were all breeding the local autochthonous bee: Apis mellifera yemenitica. The number of adult bee samples taken was 107 (7 from Madinah, 9 from Makkaah, 8 from Jazan). Overall, 74% of the colonies were housed in traditional hives, while only 26% were kept in rational modern hives. The average mortality rate (declared by beekeepers) was 44.1%, mainly occurred from November 2011 to April 2022, highlighting the presence of health issue. The preliminary assessment indicated that the varroa management practices of beekeepers were non adequate, as 38.8% of the apiaries had too high infestation levels of the mite. In many apiaries we observed clinical signs of Nosemosis. Laboratory analysis will confirm the clinical suspicion. A quite spread use of antibiotics by beekeepers was observed in three regions as a disparate attempt to control the bee mortality. A quite strong lack of awareness was detected on the impact of the medicines used at the apiary level and on the consequences concerning safety of the bee products (residues) and on the development of antimicrobial resistance (AMR). The following recommendations were identified: to change housing of bee colonies, from traditional to rational modern hives; provide beekeepers with registered veterinary medicines against the main honey bee diseases, particularly varroa and nosema; regulate the use of imported medicines; propose alternatives to the use of antibiotics with low environmental impact medicines and training on the prevention of the diseases adopting good practices and early diagnosis methods; identify a specialized laboratory in KSA dedicated to the bees; regularly monitor prevalence and incidence of the main honey bee diseases.

Comparative honey production and hoarding capacity of two native honey bee subspecies in laboratory condition

Nabila Kafé1, Fadi Herda2
1Animal Sciences Research Division, INRAA, Algiers, Algeria
2Department of Bioclimatology and Water Management, INRAA, Algiers Algeria

We aimed at the comparison in laboratory cages, the hoarding capacity and honey production of “Apis mellifera intermissa” (AM) and “Apis mellifera saharensis” (AMS) two endemic honey bee subspecies from contrasted climatic conditions. The experiment was carried out during the period April-May of the 2021. Bees of both subspecies were collected from colonies in experimental apiary. One capped brood frame for each breed was incubated at 34-35°C and at 70% RH. Emerging workers were transferred within 24 hours in a 12 × 10 × 4 cm cages endowed with transparent and removable sides and ventilation holes. Each cage had two gravity feeders containing a syrup consisting of sucrose solution (50% w/v) and water respectively as well as open surface feeder on the floor containing a pollen paste. Was added to each cage a piece of comb of known dimension and weight. Cages were maintained in 35°C incubator at 50% humidity. Consumption of syrup was recorded daily and the final honey storage capacity of each subspecies was estimated by subtracting initial and final weight of each piece of comb. Results indicate that the onset of honey deposition in the wax cells started after 10 and 16 days for AM and AMS respectively. AMS consumed more syrup than AM: 32.12±3.4ml against 28.44±3.5ml During a period of 14 days, AMS stored 16.2±1.88g of honey, averaging 22.6 mg/bee/day Whereas AMI stored during a period of 20 days, 14.2±1.44g of honey, with an average of 14.2 mg/bee/day. Our result indicates that under laboratory conditions production of honey was similar (F 0.231) for both subspecies, whereas the hoarding capacity was more important for AM than AMS (F 0.491). The most interesting observation is that AMS with five days delay in the onset of honey production (F 0.001) has eventually yielded the same honey quantity than AM.

Field evaluation of honey bee materials resistant to Varroa destructor in a production system in the north of the province of Santa Fe, Argentina

Hernán Pietronave1, Romina Russo2, Julieta Merke3, Hernán Fan1, Graciela Adriana Rodríguez4, Silvia Beatriz Lanzavecchia5, María Alejandra Palacio2, Alejandra Carla Scannapieco2
1Estación Experimental Agropecuaria Reconquista, INTA, Santa Fe, Argentina
2Instituto de Genética E. A. Favret, Instituto Nacional de Tecnología Agropecuaria (INTA) – Grupo Vinculado al Instituto de Agrobiotecnología y Biología Molecular (ABINOM-CIC), Hurlingham, Argentina
3Estación Experimental Agropecuaria Rafaela, INTA, Santa Fe, Argentina
4Estación Experimental H. Ascasubi, INTA, Buenos Aires, Argentina
5Unidad Integrada INTA Balcarce – Universidad Nacional de Mar del Plata, Buenos Aires, Argentina

Varroa destructor is a threat to the health of Apis mellifera worldwide. This ectoparasitosis is associated with high winter mortality of honey bee colonies, mainly in Europe and America. Varroa-resistant A. mellifera populations have been detected worldwide and different bee behaviors involved in survival have been documented. In Argentina, A. mellifera colonies that can survive the parasitosis without chemical treatment have been reported. From these selected materials, daughter colonies established in the Transition Chaco eco-region (Reconquista, Province of Santa Fe) were evaluated to assess their productivity and parasite loads in subtropical climate. Three groups of 11 daughter colonies each were evaluated. Two groups correspond to colonies selected for high grooming behavior and another group corresponds to a local commercial ecotype. Six measurements were carried out between October 2018 and October 2019. In each measurement, parameters of population strength, phoretic Varroa (PV), Varroa in brood (VB) and honey production in the two seasons were recorded. The average PV levels per apiary and per colony within the year did not exceed 3%, and honey yields were within the local averages for each season. The selected materials showed similar productivity to the local ecotypes. The autumn Varroa levels of the 3 groups would indicate that it is possible to assume a risk of colony death in the winter without the application of acaricide treatment. The introduction of selected materials in a conventional production system constitutes an important step oriented to visualize management strategies to reduce the use of acaricides.
Hygienic behavior in the local honey bee Apis mellifera intermissa

Noureddine Adijane, Yamina Haider, Nizar Haddad
1Département d'Agronomie, Faculté des Sciences, Université M'hamed Bougara, Boumerdès, Algeria
2Bee Research Department, National Agricultural Research Center, Baja'a, Jordan

Hygienic behavior is considered an important factor in resistance of the honey bee mite Varroa destructor. Hygienic bees have the ability to detect, uncap, and remove diseased brood from the nest before the causative organisms reach the sporingulate stage. Hygienic behavior in the honey bee, Apis mellifera L., is highly variable among and within populations and subspecies. The objective of this study was to determine the frequency of this criterion in the local race Apis mellifera intermissa.

A study on the selection of local bee colonies Apis mellifera intermissa was carried out on 50 colonies in the arid steppe zone of Djelfa, the apiary has not been treated against varroa for 5 years. During these years, the resistance criterion was evaluated 4 times a year by the method of Marla Spivak. The study points out the importance of this criterion in the intermissa breed to resist varroa. Out of 50 colonies, 20 hives remain characterized by a hygienic behavior which exceeds 90%. A queen breeding was carried out on these colonies, swarms were installed in three apiaries. Another evaluation of this criterion in the present study shows that this behavior is still present and constitutes a good basis for the selection of colonies resistant to varroasis. The study of the dynamics of varroa populations in the colonies studied shows a very weak development. The results show that hygienic behavior and temperature are two factors that limit the growth of the mite in this region. The only problem is the availability of honey and nectar resources all year round in order to have a good production of honey.

Developing of Varroa destructor mite in the local bee colonies Apis mellifera sahariensis in the Saharan zone of Algeria

Noureddine Adijane, Yamina Haider, Nizar Haddad
1Département d'Agronomie, Faculté des Sciences, Université M'hamed Bougara, Boumerdès, Algeria
2Bee Research Department, National Agricultural Research Center, Baja’a, Jordan

Varroosis is a very dangerous pathology that threatens beekeeping in Algeria; it is caused by the parasitic mite Varroa destructor. Population dynamics of Varroa destructor were studied for two years (2019–2021) in 20 Apis mellifera sahariensis colonies located in Bechar (south of Algeria). The number of bees, the amount of open brood and capped, daily natural mortality, level of infestation of adult bees and level of infestation of the brood, was monitored. The brood cycle and behavior of reproduction in Apis mellifera sahariensis is set by exceptional and seasonal contrasts in climate: dry summer (June to September), with an almost complete stop brood. Autumn, relatively wet causes a second peak of activity and reproduction. The values of the infestation rate of brood and bees show peaks in August, this period when there is an appearance of resistance AMR genes. Further analysis are still in progress.

PP-115 [Bee Health]

Hygienic behavior in the local honey bee Apis mellifera intermissa

PP-116 [Bee Health]

Developing of Varroa destructor mite in the local bee colonies Apis mellifera sahariensis in the Saharan zone of Algeria

PP-117 [Bee Health]

Environmental impact of antibiotic treatment with oxytetracycline on honey bee colonies: preliminary results

Michela Mosca, Alessandra De Carolis, Luigi Giannetti, Marco Pietropaoli, Alessia Franco, Manuela Iurescia, Marcello Milito, Camilla Di Ruggiero, Daniele Smedile, Riccardo Bicocchi, Marcella Guarducci, Claudio Ceccaroli, Massimo Terlizzi, Elisa Vendramin, Giovanni Formato
1Applicature laboratory, FAQ/OIE Centre at Istituto Zooprofilattico Sperimentale del Lazio and della Toscana “M. Aleardi”, Via Appia Nuova 1411, CAP 00178, Rome, Italy
2Centro di Ricerca per l’Olivicoltura, la Frutticoltura e l’Agrumicoltura, Via Fioranello 52, CAP 00134, Rome, Italy

Antibiotics can be used on honey bees to control infectious diseases, mainly American foulbrood, European foulbrood and Nosemosis. A field trial, on almond orchard, was performed to assess the environmental impact of the oxytetracycline hydrochloride (OTC) treatment on hives. The impact on the environment was evaluated focusing on OTC residues in flowers and on the presence of antibiotic resistance genes OTC-related (AMR), in different hive matrices, flowers included. After placing 8 hives in the proximity of almond trees, 4 hives were treated with OTC (1.68 g/hive). The following matrices, pre and post OTC treatment, were sampled: live adult bees, dry swabs from the entrance of the hives, comb honey from the nest and almond flowers. OTC residues were found not only in the untreated hives, but even on the almond flowers (up to 0.967 μg/kg). AMR genes were discovered too and results are still under investigation.

PP-119 [Bee Health]

Survey of Honeybee Viruses in Apiary Insects From Tekirdag, Western Turkey

Dilek Mus1, Mustafa Necati Music2
1University of Tekirdag Namık Kemal, Department of Virology, Faculty of Veterinary Medicine, Tekirdag, Turkey
2University of Tekirdag Namık Kemal, Department of Parasitology, Faculty of Veterinary Medicine, Tekirdag, Turkey

Honey bees with increased global economic importance lives go in natural harmony with apis or non-apis insect species. But the most viruses have been detected in honey bee colonies threatening colony health can cause high economic losses. Some of these do not prefer only honey bees to ensure in the apiaries. This investigation focused on the presence of some honeybee viruses (ABPV, BQCV, CBPV, DWV, IAPV, KBV, LSV, SBV) in some non-apis species and insects (wasp, pollinators, ladybugs, ants, etc.). The obtained results were summed using pathogens–specified PCR and sequence analysis methods. Research analyses will light new perspectives on colony health.

PP-121 [Beekeeping Economy]

Contract Production as a Risk Management Strategy in Beekeeping

Gamze Saner1, Zehra Genc2
1Ege University, Faculty of Agriculture, Department of Agricultural Economics, Izmir, Turkey
2Sirt University, Faculty of Agriculture, Department of Agricultural Economics, Sirt, Turkey

Beekeeping has made significant progress in Turkey in recent years and has become a sector that ensures the sustainability and efficiency of agricultural production and the balance of nature. Beekeeping currently has not only ecological importance but also economic importance. It is known that beekeeping, together with honey production, is one of the most important food-producing activities in Turkey. Beekeeping is a rich and ancient activity. However, in recent years, the number of beekeepers has increased significantly in Turkey. In 2019, the number of beekeepers in Turkey was 15,900. In 2020, this number increased to 17,900. The number of beekeepers is expected to continue to increase in the coming years.

Issues in Turkey’s Beekeeping Enterprises

Ahmet Emir Şahin, Gökhan Akdeniz, Pınar Şahin, Süleyman Alparslan
Department of Honey Bee Breeding, Apiculture Research Institute, Ordu, Turkey

This study was conducted online survey between November 2019 and January 2020, with the objective of determining the production characteristics and sectoral issues of beekeeping enterprises in Turkey. According to the survey, the Black Sea region accounts for 28% of the total; the Central Anatolia region accounts for 18%; the Marmara region accounts for 17%; the Eastern Anatolia region accounts for 13%; and the Aegean region accounts for 9%. It was conducted with a total
of 200 participants, 8.5% of which were beekeepers from the Mediterranean region and 6.5% from the Southeast Anatolia region. 62% of the participants are for income; 18% of them are involved in production activities for backyard purposes. The enterprises have an average of 140 colonies and produce 17.20kg of honey per year. 31.5% of the enterprises consider beekeeping to be their first job, and 49% use the migratory beekeeping model. 67% of them attended beekeeping classes. The enterprises own an average of 21 hives with 33.3% of them work with Caucasian or crossed bees, and 32.5% with Anatolian bees. It has been determined that 63.0% of enterprises meet their queen bee demands solely via their own operations, and 60.6% of enterprises are exposed to the varroa infestation. According to our findings, one of the most important concerns for enterprises in the industry is marketing, which accounts for 24%. Following issues, accommodation (17.7%), diseases and pests (15.7%), safety (15.7%), transportation (10.4%), and pesticide applications (7.1%).

Comprehensive value chain development of natural resources: The Apiculture Approach

Ibrahim Hussaini1, Akeem Abdulbe Oyerinde2, Theresa Elia Omara Aching2, Sunday Suleman Ojenwi1, Ayode Ababi Akanide2, Lawal Gusa Suraj2

1Raw Materials Research and Development Council, Maitama, Abuja, Nigeria
2Department of Crop Protection, University of Abuja, Abuja, Nigeria

The present economic challenges in Nigeria call for a serious sustainable environment-friendly agricultural enterprise with a great potential that improves export earnings. It is our fervent belief that the contribution of the Apiculture sector to its sustainable human development and specifically increases the income of beekeepers and traders of bee products through improved commercialization of quality bee products in Nigeria which will in turn lead to a drastic increase in the GDP of the nation. The overall goal of the Nigeria Apiculture Value Chain (AVC) Development Program is to contribute to an increase income of beekeepers and other actors on the AVC through increase in production capacity, and improve the business efficiency and competitiveness of the AVC products by improving standards, processing capacity so as to access higher value niche markets through Fairtrade International (FLO) certification or organic certifications and to achieve a total sales value of over $5 million by 2035 (Sustainable Development Goal SDG) target on Food Security/Agro-Value Chain (AVC) in Nigeria. The study objectively於desirable products such as honey, comb/wax, pollen, propolis, bee venom, royal jelly, apisin and apinil; prop value added products and pollination services. It is of course important to stress the need to urgently embrace the use of modern techniques in keeping honeybees for industrial development of Nigeria and also to enhance exportation of the products to earn in the Nigeria's GDP by diversifying the monolithic economy that is presently based on crude oil exportation.

Competitiveness Analysis of the Honey Sector: China- New Zealand Example

Gohbin Aldeniz1
Apiculture Research Institute

According to Trade Map 2021 data, 764,200 tons of honey was exported worldwide and 2 billion 673 million dollars of cost and time effective. In this study, 8 samples of fake/adulterated honey were found to only conform to the accepted range for pH value, HMF content, Brix number and moisture content. Every 32 samples of genuine honey utilized in this study conform to the accepted range for pH value, HMF content, Brix number, moisture content, enzyme activity and the HATIE method. Meanwhile, 8 samples of fake/adulterated honey were found to only conform to the accepted range for pH value, HMF content, Brix number and moisture content. HATIE method and enzyme activity test were able to detect the fake/adulterated honey utilized in this study. The study indicates the potential of the HATIE method as a rapid screening for authenticity for Heterotrigona itama honey.

Complementing HATIE Method for Authenticity Screening of Heterotrigona itama Honey: A Comparison to Physicochemical Parameters

Muhammad Ashraf Mohd Salleh1, Mohd Zukifi Mustafa2, Suhana Samat1, Shazana Hilda Shamsudin2, Patrick Ya3
1Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
2Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
3Apitherapy and Bioactivity, Food Science Department, Faculty of Pharmacy and Bioanalysis, Universidad de Los Andes, Merida, Venezuela

Validating the authenticity of honey has always been a challenge in the industry. The growing demand for honey in the global market further motivates the production/formulation of fake/adulterated honey that is screening-proof. Continuous improvement in analytical methods is able to distinguish genuine and synthetic honey, however, it's neither cost nor time effective. Booming production and demand of stingless bee honey in Malaysia, in particular from Heterotrigona itama species is facing a similar threat in this industry, thus the urge for a rapid-screening test. Honey Authenticity Test by Interphase Emulsion (HATIE) is a qualitative rapid-screening method used to identify genuine honey that has huge potential to be utilised as a screening method at a regional honey collection centre since its both cost and time effective. In this study, 8 samples of fake/adulterated honey (validated via UPLC) and 32 samples of genuine Heterotrigona itama honey were utilized. The results indicated that HATIE has four different localities in northeast peninsular Malaysia were compared using the HATIE method in addition to enzyme activity, pH value, HMF content, Brix number and moisture content. Every 32 samples of genuine honey utilized in this study conform to the accepted range for pH value, HMF content, Brix number, moisture content, enzyme activity and the HATIE method. Meanwhile, 8 samples of fake/adulterated honey were found to only conform to the accepted range for pH value, HMF content, Brix number and moisture content. HATIE method and enzyme activity test were able to detect the fake/adulterated honey utilized in this study. The study indicates the potential of the HATIE method as a rapid screening for authenticity for Heterotrigona itama honey.
Projection Study for the Future of Beekeeping in Turkey

Gonca Özem Özbaşık1, Muhammed Ali Palabıçak2, Raşhan İvgin Tunc3, Şahin Karahaf4
1Harran University, Faculty of Agriculture, Department of Animal Science, Şanlıurfa, Türkiye
2Harran University, Faculty of Agriculture, Department of Agricultural Economics, Şanlıurfa, Türkiye
3Muğla Sıtkı Koçman University, Ula Ali Koçman Vocational School, Muğla, Türkiye
4Southeastern Anatolia Project Regional Development Administration, Şanlıurfa, Türkiye

The study was aimed to estimate the number of beekeepers, honey production (tons) and beeswax production (tons) for the years 2020-2023 in Turkey. For this purpose, the number of beekeepers, honey production, and beeswax production data of the Turkish Statistical Institute for the years 2004-2021 were evaluated. By using different models for future prediction in time series, the models with the highest statistical significance were preferred. It was determined that the cubic regression model (R²=0.988) was the best model for beeswax production and the cubic regression model (R²=9.412) for honey production. The cubic regression model (R²=50.2) for beeswax production and the cubic regression model (R²=98.8) for the number of hives variables were found to be the most appropriate model. As a result, it is estimated that the number of beekeepers, honey production, and beeswax production will increase in the next three years. It is predicted that the number of beekeepers will be in the year 2022, 8 480 410 in 2023, and 7 823 319 in 2024. Honey production is estimated 89 985.93 tons in 2022, 79 030 68 tons in 2023, 65 998.03 tons in 2024, and beeswax production is 3 477 681 tons in 2022, 3 228 56 tons in 2023, and 2024 tons. It is predicted that it will be 2944.55 tons.

The Effects of The Coronavirus (Covid-19) Pandemic in Turkey on The Consumers’ Honey Consumption Preferences

Serife Cinbartyalı, Gökhan Akdeniz, Semet Okuyan
Agriculture Research Institute

World Health Organization (WHO) SARS-CoV-2 (severe acute respiratory syndrome-Coronavirus-2) Covid 19 disease first appeared on January 13, 2020 in Wuhan, China. From there it spread to all over countries of the world. Our study was designed to determine the change in honey preferences of consumers during the global epidemic period. For this purpose, a face-to-face survey was conducted with 730 consumers to represent our region between February 1 and April 1, 2021. Male participants made up 69% of the consumers who participated in the survey. 97.6% of the participants stated that they consume honey and the average annual consumption per household is 8.172 kg. 37.5% of the participants declared that their honey consumption increased during the pandemic process. The majority of consumers declared that they obtained honey from beekeepers both before and after the pandemic. 39.9% of the participants stated that honey prices increased during the pandemic period. In terms of consumption, filtered honey took the first place with 59.5%. Before the pandemic, 88.33% of consumers stated that they consumed honey for nutritional purposes and 9.41% for health protection purposes. In the pandemic period, it was determined that the rate of use for health protection and treatment (16.44%) increased.

A Revival of Georgian Traditional Beekeeping – JARA Beekeeping

Avksenti Popava1, Lea Putkaradze2
1Georgian Beekeepers Union, Tbilisi, Georgia
2Alliances Caucasus Programme, Georgia

Wild beekeeping techniques are rare these days, but Georgia, the homeland of the well-known Caucasian Mountain Grey Bee, is one of the few places in the world that has preserved it in remote dwellings. Jara is an ancient beekeeping tradition which is an excellent example of the mutually beneficial coexistence of wild nature and humans (www.jarahoney.com). This unique way of life was particularly practiced in the sub-tropical and alpine zones of Western Georgia. There is no evidence for when exactly Jara appeared. However, several local folktales note that ancient inhabitants found the bees in a tree hollow and they called this place in the forest ‘the bee tree’. Later, locals started collecting of swarms of wild bees and settling them into hollowed wooden logs and then placing them high up in trees to protect them from bears. Such wooden logs were called Jara. After the invention of frame beekeepers in the 19th century, Jara hives were increasingly replaced by modern beekeepers and the practice almost died out.

Jara honey, with its history, production in a bio-diverse environment and natural honeycomb have great potential to compete in the international market as a unique niche product. Jara beekeeping has begun a slow revival since 2014. In 2016, the first time ever, twenty Jara producers sold their entire crop of Jara to a commercial enterprise. It brought hope and a feeling of pride to those beekeepers who have been continuing or were starting to take Jara beekeeping up. Since then, the number of Jara beekeepers has already increased by 44% and Jara honey production has increased by 103%. Jara honey has been branded, granted cultural heritage status and has been successfully certified as Bio and been exported beyond Georgia to US and Canada, the Gulf States and Japan. This presentation will showcase success story so far of the revival of Georgian Jara beekeeping and its prospects going forward through the lens of the Georgian Beekeepers Union (https://geoabeekkeepers.ge, https://jaraabeekkeepers.org)

Farming of Stingless Bee (Meliponines) to Recovery Indonesian Holistic and Global Economy

Akeo Dang1, Muhammed Sahlan2, Chauli Hudyasa2, Heni Hermansyah2, Rambat Lupiyoad3, Aprilikana Cahya4, Kenny Lischer2, Jeffry Lesmana2, Yogi Hutomo5, Muhammad Chandra6, Rita Nurmalina7, Nia Rosiana8
1IP University
2Indonesia University
3Indonesian Beekeeping Association

COVID-19 pandemic creates a negative impact, namely the increasing of unemployment in Indonesia. According to BPS data in February 2021, the number of unemployment was 8.75 million people and it increased 8.22 million people by more than 20% in 2020. Since December 2021, Indonesian government opened GDP Presidency on the slogan Recover Together, Recover Stronger. The goal is for Indonesia to be able to encourage all countries to work together to achieve a stronger and more sustainable world recovery due to the impact of the COVID-19 pandemic on all sectors, especially the economy. One of the agribusiness efforts in the context of economic recovery that is easy to do is stingless bee farming as the type of bee is very environmentally friendly, adaptive to extreme weather and also has high economic value honey production.

Bank Indonesia (BI) as the central bank which has the responsibility to maintain the stability of rupiah has sponsored the research on economic recovery through beekeeping in Islamic boarding schools that we conducted in three provinces in Indonesia, namely Bengkulu, South Sulawesi and West Nusa Tenggara. The result of the research, seen from the economic side, shows that on average, Islamic boarding schools that received assistance from 100-200 stingless bees valued at Rp 153,585,000 has a payback period of 2 years and 1 month, ARR 167.87%, IRR 65.76%, NPV Rp. 376, 314,692 and Profitability Index (Pi) 3.78%. All show that it is feasible to be developed in a sustainable manner. Islamic boarding schools are able to produce honey to sell for Rp 20,000,000 per month.

If it is developed more widely, this stingless bee farming business will create jobs and improve the economy of the community nationally because the demand for honey is still wide while production is still low. Moreover, if it is able to meet export needs for health and cosmetic needs made from bee-derived products, it will have a positive impact not only on increasing economic in Indonesia but also in the world.

A Profitable Honey Farming Business in Indonesia

Jeffry Lesmana3, Yogi Hutomo3, Muhammad Chandra3, Rita Nurmalina1, Nia Rosiana1
3Harran University, Faculty of Agriculture, Department of Agricultural Economics, Şanlıurfa, Türkiye

Farming stingless bee (Meliponines) has been implemented in Indonesia since 2017 with the support of the Forest and Wildlife Ministry. As a result, the number of beekeepers increased from 700 in 2017 to 70,000 in 2021. The world profit index of honey farming is 3.81%. The proposed model is designed to estimate the number of beehives, honey production (tons) and beeswax production (tons) for the years 2022-2023, and 2024 in Turkey. For this purpose, the number of beehives, honey production, and beeswax production data of the Turkish Statistical Institute for the years 2004-2021 were evaluated. By using different models for future prediction in time series, the models with the highest statistical significance were preferred. It was determined that the cubic regression model (R²=0.988) was the best model for beeswax production and the cubic regression model (R²=9.412) for honey production. The cubic regression model (R²=50.2) for beeswax production and the cubic regression model (R²=98.8) for the number of hives variables were found to be the most appropriate model. As a result, it is estimated that the number of beekeepers, honey production, and beeswax production will increase in the next three years. It is predicted that the number of beekeepers will be in the year 2022, 8 480 410 in 2023, and 7 823 319 in 2024. Honey production is estimated 89 985.93 tons in 2022, 79 030 68 tons in 2023, 65 998.03 tons in 2024, and beeswax production is 3 477 681 tons in 2022, 3 228 56 tons in 2023, and 2024 tons. It is predicted that it will be 2944.55 tons.

Value Chains-Commercial, Honey vinegar

Marisol Juárez Rueda
Kao Táskat Company, C.O.

In the most uncertain environment for the year 2020 we decided to take the innovation challenge. We produced the first honey vinegar sold in retail that competes against others from Spain, usually found in specialty stores.

This small company is located at the state of Veracruz, where the fields is characterized by microflorations, with an intense diversity of species. The proposal of hive products had outgrowth into six lines: food, honey, gourmet, apicosmetic, health and teas.

In the most uncertain environment for the year 2020 we decided to take the innovation challenge. We produced the first honey vinegar sold in retail that competes against others from Spain, usually found in specialty stores.
This artisan honey vinegar is matured and clarified after a double fermentation process, and is very suitable for gourmet food, no sulfites added. And only the purest and finest honeys are selected for this product. In conclusion, Kao Tátkak covers the unique market for the local development through diversification where the added value is at least 50% the value of the raw materials.

PP-124 [Beekeeping Economy]

Evaluating plant origin of honey based on pollen evidence in some prominent honey-producing zones in Iran

Zahra Shafikoon1, Ahmadreza Mehrabian1, Farid Salampour2

1Department of Plant Science and Biotechnology, Faculty of Science and Biotechnology, Shahid Beheshti University, Tehran, Iran

2Department of Biodiversity and Ecosystem Management, Research Institute of Environmental Sciences, Shahid Beheshti University, Tehran, Iran

Melissopalynology is one of the most important scopes in applied palynology that identifies and evaluates pollen in honey to quality control as well honey classification. This valuable approach connects academic researchers with manufacturers, exporters, and industrial units. This study is the first pioneering study in the world that has been performed for the first time in the field of melissopalynology using scanning electron microscopy (SEM). This study consists of two parts: field and laboratory studies. In the field section, direct examination of beehives and direct sampling of honey, the amount of 300 g of unrefined and non-clay honey was collected from 93 beekeepers, which was done in different geographical, geomorphological and climatic regions and a suitable statistical population. The samples were placed in sterile containers and stored in a cool place until they reached the laboratory. In the laboratory, pollen grains were extracted from honey samples by the method (Louveaux et al. 1978) and after preparation were imaged by scanning electron microscopy. Pollen grains were identified based on standard palynology references and their quantity and quality were evaluated according to the standard table (Louveaux et al. 1978) after analysis. 57 samples of honey (61%) had the standard pollen grain content. In the results of this study, 41 plant families and 53 genera were identified, with the highest presence of Asteraceae - Fabaceae - Rosaceae - Apiaceae - Apocynaceae families, which is similar to the results of some other studies. All honeys collected from the study area were Polyspecific honey. Honey samples were collected in 7 altitude intervals, which according to the results, it seems that the highest density of pollen grains in honey samples collected in the altitude range of 1000-1500 meters. The results of our studies show that studies to palynology criteria, about 30% of the honey samples studied are counterfeit.

PP-130 [Beekeeping Economy]

Each beekeeper needs book about beekeeping. The findings in the book are from the monitoring of 10,000 hives around the world from Australia, Japan, New Zealand, all European countries, but also from the USA and Canada

Peter Kocalka, Stanislava Horcikova

Bee Hive Monitoring S.R.O., Jelka, Slovakia

I wrote this book because the circumstances allowed me to discovered something fascinating. Something I had no idea about until them, and maybe I was slightly looking for: My character allowed me to look at reality objectively and also forced me to try new things before I could be marked by the old ones. By this I mean old practices, prejudices and myths, which have been accumulated in huge numbers in the beekeeping industry. It allowed me to discover a lot of to then unknown, and each touch discovery shifted perception as if a child is learning to perceive its surroundings, as long as it can skill defend itself against the warnings of adults who force it into a stereotype of running tracks. I was blessed to be allowed to take care of hundreds of hives early enough so that I didn’t make false logic conclusions for look of data. I was also fortunate to study mathematics and computer science, where I was thought how to filter truth from myths and evidence from assumptions. Last but not least I was blessed with the ability to create electronic devices and program computers which allowed me to acquire objective data that cannot be acquired by human senses, even with the best of intentions.

The love of bees, which gradually grew into a project that monitors tens of thousands of hives, allowed me to confirm or refute all discoveries. And here I must note that such an interplay of circumstances could not have arisen if several people had not been mentally prepared for it, but also technology. Thanks to all the people who took a part. Despite the fact that there were thousands of them, most of them don’t even realize it. I wish everyone who reads this book to take it as an adventure, to inspire him to discover new ones, and to force him to return to his childhood when skill had the courage to ask the questions WHY?

PP-137 [Beekeeping for Rural Development]

Reserves for increasing honey production in the conditions of the Saratov region - the experience of introducing small-format types of bees

Dmitry Maslov

Ministry of Agriculture of the Saratov Region Livestock Development Department Public Committee on Beekeeping Problems Saratov, Russia

The article describes in general terms the technology of working in the hives of the Dadan system of a low-thrm type - for six and eight frames, which allows to increase the profitability of apiaries in the conditions of the Saratov region due to the additional collection of spring honey. The main conditions for this is the selection of low-speed and productive lines of Buckfast bees (Buckfast), the use of carnica bees is allowed.

The goal of our four-year work was to find the optimal solution to this difficult problem. In our region, the flowering of garden trees, shrubs, including acacia, and maple coincides with the period when bee colonies reach overgrowth, the number of nurse bees in them exceeds the needs of the bee colony and such colonies enter the swarm state. When choosing bees, we were guided by the initial selection of the least swarming, but quite hardy. Such requirements are successfully met by the bees of the Buckfast breeding group, adapted through subsequent selection and breeding work in our bee industry. We used lines 9B8, 9B19, B2275, B466 with our selection code BHL. During the spring build-up, bees in 6 or 8 frame hives matured of modern materials quickly reach the stage when they accumulate nurse bees in excess form, but instead of entering them into a swarm state, such bees begin to actively process the nectar obtained from collecting bees, we limit the nesting part with a Hahnenmanner dividing grid and then put a store extension with a frame of 14x47mm for collecting commercial bio honey, then in the section between the nest housing and the first store extension, we give the second housing. Thus, according to our data, the introduction of such a technology on the territory of the Saratov region will increase the yield of commercial spring honey, which will increase the profitability of such apiaries in difficult market economy conditions. Carrying out diversification is more affordable - it is enough to divide the twelve-frame hive of the Dadan system in half and add a second hole.

PP-138 [Beekeeping for Rural Development]

Breeding business in Russian beekeeping in 2021

Dmitry Maslov

Ministry of Agriculture of the Saratov Region Livestock Development Department Public Committee on Beekeeping Problems Saratov, Russia

One of the most relevant topics - the state and prospects for the development of Breeding in our country over the past year has been raised many times at various venues, mostly interactive, largely due to restrictions due to the Covid 19 pandemic. As a direct participant in the most significant of them, I will allow myself, among other things, to call for further joint actions. Together with the biologist-ecologist S.G.Springer, we considered the publication of the article "To create a vector of development For Beekeeping" in the oldest specialized printed publication - the journal "Beekeeping", where we sent the article. The ultimate goal is to reach the level of scientific controversy for common goals - the preservation of the gene pool, rethinking a number of rash steps taken by official scientific thought. Why are the Germans, Austrians, Americans, etc. purchasing Far Eastern bees, as well as Central Russian, why did the Poles buy gray mountain Caucasian, and the Belgians, Australians buy more bees in Liguria and Morocco? We also received an answer - in these countries many years ago, due to their own short-sightedness and prohibitions, the gene pool of local bees eventually narrowed and their vitality fell to a level below average. And at the moment they are improving it, expanding it precisely due to such importation. Foreign colleagues, through research, establish such positive effects at the level of bee populations, yes, there is a count beyond the threshold of the number in order to prevent excessive infusions from outside. Thus, purebred bee populations have their own rational use, there should be as many of them as possible, it is impossible to focus only on a few breeds, albeit of national importance. A new combinatorial type of bee breeding based on economically useful traits, where bee morphometry is one of the main and insignificant tools in bee breeding, necessary at the stage of identifying special traits.
Poisoning of bees with chemicals from the fields is one of the main problems of the existence of beekeeping in Russia

Dmitry Medlov
Ministry of Agriculture of the Saratov Region Livestock Development Department Public Committee on Beekeeping Problems Saratov, Russia

The death of bees, unfortunately, is a regular phenomenon for a number of reasons and exists in all countries. In Russia, this is, first of all, the winter death of bees due to the long winter during meteation and due to improper chemical processing. In 2016-2017, many bees died in the regions: in Bashkortostan - 40, in Orenburg - 60%. Previously, there was no summer death of bees in Russia. Why? Because our traditional crops buckwheat and soft wheat are not needed by anyone abroad. At the moment, the Russian agro-industrial complex is reaching the level of the oil industry and is able to extract really serious money for the country. And that is why farmers sow marginal crops, in particular, rapeseed, but the literacy and culture of farmers leave much to be desired. Instead of one chemical treatment, four are produced, for example.

In Ufa, where the Apimondia Congress will be held, one of the sugar processing plants is closing. All beet growers were gathered and told: guys, we need to grow rapeseed. To which the answer came: Then release us from responsibility to everything, aviation processing of fields now does not require, as before, coordination with the federal executive authority, agricultural airfields can be placed closer than three kilometers from settlements. During the processing of woodlands and agricultural crops, according to the previous edition, selective laboratory control in accredited laboratories for the content of residual amounts of pesticides in the atmospheric air at the border of the sanitary gap zone (300 m) should have been organized, respectively, according to the new edition, no laboratory studies. The main cornerstone of the new edition is the permission to carry out chemical treatments of fields outside settlements during the daytime, and night processing is left only within settlements. It is obvious that in the current conditions, without a global association of beekeepers at all levels and the subsequent development of protective measures.

The reform of the Veterinary Service for the beekeeping industry is the most important step in the elimination of bee diseases

Dmitry Medlov
Ministry of Agriculture of the Saratov Region Livestock Development Department Public Committee On Beekeeping Problems Saratov, Russia

We have joined forces based primarily on the results of our own scientific research, which reveal the problem in mass distribution as known (varroatosis, nosematosis) and there are few studied viral diseases of bees in the territory of the Russian Federation, which for several years lead to fatal consequences – a reduction in the number of bee colonies in the Russian Federation, a shortage of products both at the level of amateur and professional apiarists. We were tasked with finding a faster and at the same time radical solution to the problematic issues raised. This will be possible with the approval of the beginning of the reform of the veterinary service in relation to the beekeeping industry. The main mechanism of the reform was discovered in the works of Professor O.F.Grobov, this is the creation of a service of regional veterinary experts in beekeeping, whose main task will be comprehensive veterinary and sanitary maintenance of apries. The creation of a well-thought-out network of veterinary services for apries in the country will allow. The establishment of the institute of veterinary experts on the territory of the Russian Federation will be more effective if a number of conditions are met - the ban on the import of cellular bee packages from Central Asian countries into the territory of the Russian Federation, which actually carry a huge burden in the spread of diseases of both adult bees and their larvae. As well as the speedy creation of courses on licensing of regional veterinary experts.

Ban on the importation of bees from Uzbekistan as a basis for the development of Russian beekeeping

Dmitry Medlov
Ministry of Agriculture of the Saratov Region Livestock Development Department Public Committee On Beekeeping Problems Saratov, Russia

By now, it is possible to formulate the main problems of beekeeping in Russia, which have developed due to the importation of bees from Central Asia. 1. The absence of a regulator on the market in this matter, represented by the Ministry of Agriculture of the Russian Federation, has led to the fact that the production of bees for the purpose of their subsequent sale in the form of four, six frame bee packages in the Southern Federal District, the Volga Federal District has decreased to catastrophic figures.

2. Bees from Uzbekistan, initially selected for pollinating characteristics - cotton was the main crop for their use, are metalwork, with a high tendency to swarm, and often with increased malice. Their spread across the territory of the Russian Federation, natural reproduction - swarms annually cause huge, irreparable damage to the breed gene pool in the Russian Federation.

3. The lack of proper control when importing bees from Central Asia - the quarantine measures prescribed by the legislation by the Veterinary Service of Russia every year leads to a massive spread of quarantine infections. In turn, as a tool that will help the development of “Batch beekeeping in Russia” to the regulator represented by the Department of Animal Husbandry at the Ministry of Agriculture. The CX of the Russian Federation offers two options for assistance in this matter.

To allow the import of bee packages from Central Asia only in the form of cell-free frames - cell-free packages. This is a generally accepted world practice - batch beekeeping in Australia, the USA, and Europe has a place to exist at this level. Mainly due to the fact that in this case, at the same time as a positive effect of the spread of quarantine infections that spread together with cellular frames is minimized. Bees in this case can also be subjected to special preventive treatments. Such goods are less in demand, mainly due to lower payback, technically more difficult to transport, in this case the final selling price will not be low, there will be fair competition with Russian bee producers.

Does experiential learning at the bee hive improve the beekeeper’s ability to recognise and diagnose diseases through community learning for the hobbyist beekeeper?

Eleanor Attridge1, Arjan Van Rossum2, Tom O Mahony3
1 Munster Technological University (MTU) Rossa Ave Bishopstown Cork Ireland
2 Dundalk Institute of Technology (DkIT) Dublin Road Dundalk Co.Louth Ireland

Previous EU research highlights a lack of good bee management practices, an inability to follow directions for veterinary medications and poor disease recognition skills as a hindrance to honey beekeepers. This paper evaluates a “train the trainer” workshop using beekeepers to train/teach other beekeepers, using a systematic method and making printed learning material available to guide them. The data was collected in the Republic of Ireland on a small scale, a low-cost initiative that could be repeated and expanded in any beekeeping setting.

A group of beekeepers that had a recent high level of theory-based knowledge through beekeeping exams came together and designed the printed resource booklet: “Brood Diseases of Honey Bees in Ireland”. Instructions on identifying brood issues were delivered through practical, peer-to-peer demonstrations to other beekeepers, using the printed resource as a reference guide. All beekeepers were asked confidence base questions on their knowledge, skills and abilities before and after the workshop. An online quiz in the form of photographs of potential hive problems was made available to both participants and the public (other beekeepers) to measure the improvement, if any, in the perceived level of knowledge and skill.

The online quiz was available to the public as well as the beekeepers being trained. The target group of beekeepers who undertook the workshop achieved an improvement in their skillset of 27%, scoring on average 9% higher on the quiz than the beekeepers who did not attend the workshop.

The beekeepers who designed the printed resource reported an even larger improvement in their skillset: 100% found an improvement in their skills and abilities in disease recognition. This additional learning may be due to the research completed in order to design the printed booklet (e.g. they had to go out and identify and photograph diseases and problems to include these for the booklet).

This is a low-cost solution to a major problem that can easily be repeated nationally/internationally with some coordination and booklets. Initial feedback has been very positive with a perceived improvement of disease recognition across all beekeepers who took part (either online or in the workshop).
Ethiopia is a country of broad ecological diversity, located in the northeast Africa, and has rich tradition of subsistence beekeeping with strong connection between honey bees and human beings since ancient time. It has been recently transformed this traditional beekeeping aiming to enhance productivity by introducing improved bees, which is pronounced in northern Ethiopia's Tigray region where the demand for colonies was increased and colony marketing developed.

Here, we assessed the regional beekeeping progress, status of colony marketing and genetic differentiation of honey bee populations. Annual honey production, yield per hive, number of beekeepers, and percent increase were summarized from annual reports of Ethiopian Central Statistical Agency from 2004 to 2020. In addition, colony market survey was conducted by interviewing a randomly selected 120 buyers and sellers to determine ecological and spatial re-distributions of colonies and drivers. Furthermore, highland and lowland population distributions were compared in areas involved and not involved in colony marketing by analyzing sequence data of a nuclear gene fragment with adaptation to altitude elevation. The results showed that substantial progress was achieved in the regional beekeeping. Growth from 1% to 23% movable frame hives (cf. 3% national), which gave significantly higher honey yield (19.9 kg, cf. 10.7 kg traditional), increased the annual honey production (3x) and number of colonies (90%; cf. 65% national). Colonies were produced by a few highland beekeepers, sold to honey producers and transported widely with significant changes in ecological (X2=6.27, P=0.044) and spatial (X2=104.56, P <0.01) distributions due to the buyers' preferences for colour (73.3%) and source area (FST=0.219; Nm=2.23), where beekeepers locally trap swarms. Therefore, development initiatives should focus on enabling honey production for colony sellers in the highlands and creating for the buyers local access to colonies.

In order to promote the "collective mode of innovation" developed in REDLAC and to incorporate learned lessons, an adequate management of codified and tacit knowledge is essential, through which active exchange of information and experience in the territories, where the use of ICT's plays an important role. The proposed strategy makes it possible to socialize the scientific information generated in the project, combining it with the experience of technicians and beekeepers, generating a new level of knowledge applicable and adjusted to the reality of each territory, to promote the innovation through a agile and economic process of knowledge management. The challenge is to make the knowledge generated by the research team be available to the small organized beekeepers in an equitable way, while capturing the experience accumulated by the beekeepers themselves in the territories through the active participation of extensionists. The proposed strategy combines virtual tools with face-to-face ones, working at three levels: a) Training of extensionists through an university formal career in virtual mode; b) Several courses using the MOOC Platform; c) Permanent Plan for the Professionalization of Beekeepers. The proposed knowledge management strategy is being implemented and a series of successful experiences have been developed. The course of the Degree in Beekeeping for Development was completed, 43,600 people were reached in three MOOC courses. The Permanent Plan for the Professionalization of Beekeeping has been initiated, a joint proposal of the Beekeeping Program of INTA Argentina and the National University of the Center of Bs.As. (UNICEN). This Plan allows putting the "collective mode of innovation" into action, involving a team of 12 researchers, 48 technicians and 690 beekeepers, linking in two components: virtual and face-to-face, and certifying the professional skills of beekeepers from INTA and the University. Progress was made towards a community of practice by expanding the team significantly. The knowledge management strategy is underway and the collective construction of knowledge allows quick and timely responses to the challenges faced by the beekeeping sector.

Over 100% expected honey yield increment for the African Honey Industry- The case of promoting and adopting the use of a book-like frame that allows honey harvesting without comb destruction

Abraham Alotey
Resource Management Support Centre, Forestry Commission, Ghana

INTRODUCTION:
Africa is a net importer of honey even though African has a fairly large population of bees with variable materials for all types of hive construction.

Low honey yields are due to
1. Failure to recognize beekeeping as a viable business compared to other enterprises
2. Honey harvesting methods that destroy the comb
3. Inadequate skills for Queen rearing and colony multiplication

All the above inadequacies could be solved by the adoption of the following which can be done by wood, metal and food grade plastic
1. Honey comb brace
2. Honey comb brace is a book-like mechanism in which foundation combs are inserted and placed in hives similar in function to the Langstroth frames but very simple to use. Its width could be varied to enable the current top bars with honey-laden combs to be inserted and their honey extracted without comb destruction in a tangential extractor. The brace does not use top bars but an alternative feature and it enhances faster honey production and in higher volumes.

With these innovations efficiency in honey harvesting will improve and honey yields will increase by over 100% as compared to current status. This will attract investments into the bee industry to enhance its business nature in Africa. The brace will also enable all the benefits of Langstroth frames by way of queen rearing and pollution services provision to be implemented to provide revenue to the beekeepers. These innovations will enable the entry into the bee industry to be affordable, stress-free attractive and financially rewarding as compared to other enterprises as the honey production will be faster in terms of volumes and quality.
Framework Hive Concept – An affordable sustainable Beehive that combines all the advantages of standard hives

Abraham Anley
Resource Management Support Centre, Forestry Commission, Ghana

INTRODUCTION: Africa is a net importer of honey even though African has a fairly large population of bees with variable materials for all types of hive construction.

Low honey yields are due to:
1. Failure to recognize beekeeping as a viable business compared to other enterprises
2. High cost of bee keeping inputs eg. Beehive
3. Honey harvesting methods that destroy the comb
4. Inadequate skills for Queen rearing and colony multiplication

High cost beehives challenges could be solved by the adoption of the Low tech and efficient Framework beehive concept which can be done by wood, metal or food grade plastic

1. Framework hive

Framework hive concept is designed according to the peripheral shape and size of all standard hives with the body of the hive having openings to be covered with various materials such as bamboo, raffia, rattan, scrap wood, woven basket etc. This makes bee hives to be constructed with available local materials at reasonably very low cost. Bees can freely form their combs on branches of trees thus the covering of the hive is to provide ‘privacy’ and help in maintaining conducive internal conditions. Thus the Tanzanian Framework hive will be cuboid in shape with the top bars weight resting on the frameworks.

With these innovations beehives will be affordable as compared to the current status. This will attract investments into the bee industry to enhance its business nature in Africa and also create the needed green jobs. These innovations will enable the entry into the bee industry to be affordable, stress-free, attractive and financially rewarding as it will promote innovativeness of beekeepers to reduce the cost of beehives.

The Contribution of Kastamonu University Forestry and Nature Tourism Specialization Coordinator to Beekeeping

Ilknur Sahin
Kastamonu University

Since 2015, 5 university is specialized by Higher Education Institution (YÖK) in Turkey. Kastamonu University is specialized with “Forestry” and “Nature Tourism” at second stage of specialization of YÖK at 2018. In 3 years, Forestry and Nature Tourism Specialization Coordinatorship (OTTI) has actualized many missions in terms of regional development. In that sense, Forestry and Nature Tourism Specialization Coordinatorship educate beekeepers and earn job. OTTI has certified beekeepers for next years. By the way, Forestry and Nature Tourism Specialization Coordinatorship organized trainings for beekeepers in 2021-2022. Firstly, “Production of Chestnut Honey” education has given to “Kastamonu Province Beekeepers Association” in 02.10.2021 and then “Beekeeping and Bee Products Workshop in Kastamonu” at 03.11.2021. Another contribution of the Coordinatorship is “honey forest” project in Kastamonu region. With this project, Coordinatorship aimed to have regional development by supporting beekeepers. Also, the protocol has signed with Kastamonu University and “Kastamonu Province Beekeepers Association” to analyze honey for commercialization.

Guards of the Forest, beekeepers as stewards of natural forest

Milan Wiercx van Rhijn
Facing Bees Foundation, BiBee

In South West Ethiopia there is wild abundant Flora and Fauna. A stark contrast between the other areas that exist in the country - where we find degraded land in the north, we find lush and strong ecosystems in the South West. Beekeepers here are key actors keeping this richness of biodiversity intact. The beekeeping practices are transferred through generations, the local bees are freely available, as well as the materials are sustainably sourced. The bees have healthy weight resting on the frameworks.

Empowering underprivileged groups: beekeeping in Slovenian prison

Gorazd Trišnjec
Urban Beekeepers’ Association of Slovenia, Ljubljana, Slovenia

Urban Beekeepers’ Association of Slovenia is since 2020 part of international EU consortium FoodE, which is focusing on food chains and sustainability, and within this we’re leading a pilot project “Prison Honey” - empowering the imprisoned persons through teaching them how to keep the bees within the perimeter of the institution on the periphery of Ljubljana. The pilot is building on the existing »rent-a-hive« initiative to develop a new service involving the long-term prisoners undergoing rehabilitation. The pilot is focusing on regional detention centre, but with the ambition of spreading the model throughout Slovenia in the future. Bees have been set up within the prison system and we’ve started with education of the inmates through workshops involving social workers and beekeepers in 2021. The aim was to provide the prisoners with their own honey and other bee products (pollen, propolis, pure wax), create more humane and socially inclusive conditions within the penal system, and provide the prisoners with the possibility of a new career/job after the end of their incarceration. We’ve created new job opportunities and have involved more than 100 local stakeholders attending training and dissemination workshops so far, divided into smaller groups (around 12 persons in each group for greater effect).
more than 1000 children that participate in the dissemination and promotional events, online international dissemination. In short, the objectives of the project were to go beyond business opportunities and food production as such, as they also include social activation in its core. In fact, the project offers a way to rehabilitate and empower underprivileged groups of society, to create more human and socially inclusive conditions within the penalty system. The pilot project could also be implemented in different care facilities (for the elderly, persons with various disabilities, etc.), with the aim to provide users with opportunities for quality social inclusion, active working life, personal development, developing independence and social networks. In the future, we hope to turn the pilot into an example of good practice and show the therapeutic potential of beekeeping as a craft, vocation, or occupation, not only in Serbia but also abroad.

PP-144 [Beekeeping for Rural Development]
International Photo Competition - Bee Press Photo 2021
Michal Petruška1, Marie Šotolová2, Teresa Kobialka3, Marko Borko4, Robert Brodschneider5
1Magazine for beekeepers Dymák, Slovakia
2Magazine for beekeepers Moderní včelař, Czech republic
3Magazine for beekeepers Pasieka, Poland
4Magazine for beekeepers Slovenski čebelar, Slovenia
5Magazine for Beekeepers Bee World, Austria

International photo competition called Bee Press Photo 2021 - the aim of the competition was to present and evaluate photos with a beekeeping theme. The best photos evaluated by the jury were then organised to the exhibition showed through the schools and cities around the Central Europe to promote key role ofApis mellifera in pollination.

Many people have a chance to discover more about pollinators and their role in our everyday life. They discovered also the work of beekeepers standing behind their lifes. There were two thematic categories of the competition: the first called “Bee in all its stages of life and activities” and the second “Working and relaxing at the apiary”.

Age categories were adicted for adults and youth separately.

The photo competition Bee Press Photo was supported by beekeeper’s magazines from Slovakia, Czech, Poland, Slovenia and international magazine Bee World. More than 200 pictures was collected and now we have some 30 best photos prepared to be shown by 47th Congress od Apimondia.

The one of our winners pictures you could find on the title of Bee World, Volume 98, Issue 4 (2021)

PP-151 [Beekeeping for Rural Development]
Women, bees, and sustainability: the case of a meliponiculture course
Isabel Ribeiro Do Valle Teixeira1, Angeljo Rambuch2
1Federal Institute of Education, Science and Technology, South of Minas Gerais - IFSUDEMINAS - campus Poços de Caldas, Brazil
2Department of Cellular and Developmental Biology, Institute of Biomedical Sciences, Federal University of Alfenas, Minas Gerais, Brazil.

A meliponiculture course can be an efficient way to encourage the practice of sustainable activities as a source of supplementary income and, at the same time, provide moments of self-knowledge and social reflection for women, especially those in rural areas. Here we report the experience of a female inclusion project using “native stingless bees” as a motto. The project involved the creation of a multidisciplinary group for course planning, production of methodology and didactic material, as well as the identification of the target audience and how to access it (women primarily farmers and at risk). The course was offered online, due to the COVID-19 pandemic, with monetary and pedagogical assistance to the most needy students. Twenty-two women were enrolled and the 40 h course was developed for 3 months in the first semester of 2021, with presence in synchronous activities around 80 to 100%. The physical material produced was collected directly from IFSUDEMINAS-Campus Poços de Caldas (Minas Gerais, Brazil) or sent via regular mail. The course was divided into 5 modules of 8 h: 1. The most important animal on Earth; 2. The history of the relationship between humans and bees; 3. The relationship between bees and flowers; 4. Breeding native bees; and 5. Management of stingless bees. In all topics, it was possible to discuss and integrate the biology and management of bees with social aspects of the students and the community where they live. Seventy-four percent of the students who took the course considered beekeeping a viable activity and intend to work with bees in the short or medium term, suggesting that the activity can be adopted as a sustainable and feasible activity. Furthermore, delving into the biology of social bees, which is based on a predominantly female organization, was an effective instrument for the discussion of various social issues related to feminism, self-knowledge and personal and historical appreciation. We conclude that the development of meliponiculture courses should be encouraged in communities in Brazil and in other countries where the role of women in society and the quality of life and the environment are deteriorated.

PP-153 [Beekeeping for Rural Development]
Beekeeping Role in Preserving Altai Biodiversity and Improving Public Health
Nurlan Toktarov
Department of Beekeeping, East Kazakhstan Agricultural Research Station LLP, Ust-Kamenogorsk, East-Kazakhstan Region, Republic of Kazakhstan

Beekeeping can become nature conservation factor. In order to confirm the assumption, “Natural Pasture Biodiversity Conservation and Restoration” project was conducted on the territory of the “Katan-Karagai” State Nature Park. The National Park is located in the Kazakh Altai, where the borders of four states (Kazakhstan, Mongolia, Russia and China)
converge. According to historical data, it is considered the origins of the Turkic people. The landscape of the area presents an extremely rich variety of flora and fauna. Most of the plant species growing in the area are good honey bees. The main occupation of the local population is cattle breeding, the number of which increases every year, which affects pastures overgrazing, and highly edible plants vanishing. To restore biodiversity, program of comprehensive development of beekeeping and agroforestry with apitherapy elements is launched.

In the frameworks of the project, the objectives of the project, to be pursued in 16 pilot sites (of about 2.5 hectares each) in Italy, Spain, and France, are in line with the European Union’s environmental strategy aimed at protecting forests from damage caused by climate change, strengthening local ecosystems and protecting biodiversity.

Within the duration of five years and a total budget of €6 million, of which €3 million has been allocated by the European Commission, the LIFE VAIA project aims to develop an innovative approach based on the application of “temporary” agroforestry measures (15/20 years). The strategy makes it possible to invest in the production of sustainable and low-impact products, increasing biodiversity and the sustainable use of resources. The main actions financed by LIFE VAIA concern the reproduction and cultivation of wild blueberries and other “wild” small fruits, food and medicinal plants in forest ecosystems, as well as the enhancement of beekeeping production in forest areas destroyed by storms and other extreme climate events. The forestry strategy pursued by the project will make it possible to limit the economic damage suffered by local communities and to develop innovative silviculture and value-added products.

PP-158 [Beekeeping Technology and Quality]

Apivox Varroa Eliminator. A new method of beekeeping and a new bee hive, the task of which is to suppress the development of Varroa mites population

Jose Luis Glebski
Research Dept. Apivox Project, Barcelona, Spain

In the frameworks of Apivox Varroa Eliminator project, the possibilities of suppressing the development of the Varroa mites population in bee colonies were studied. It is well known that it is the development of these mites and the associated viral infections that ultimately lead to the collapse of bee colonies. For today this task is of global importance.

For three years of work, we managed to find such a way of keeping bees, which made it possible to reduce the intensity of mites reproduction, which, together with simple zootecchnical methods, made it possible to suppress the development of mites in experimental families. Of course, we do not completely destroy the population of mites, but every year their population is getting smaller and smaller.

Within the frameworks of the project, after analyzing dozens of works by well-known world-famous scientists, a new method of keeping bees was developed, and a new design of the hive was created for any frame standards, which allows keeping bees in accordance with the new requirements. The 2019-2021 seasons were a test season for a new method and a new hive. The results to date are promising!

Experimental colonies with initially different numbers of Varroa mites and different amounts of early brood ended the season with the number of mites, confirmed by alcohol wash, in the amount of 0.8-2% to the number of bees. At the same time, the control colony with a large amount of spring brood showed a result of 20.3%. At the same time, no chemicals were used.

The design of the hive is simple and can be used almost anywhere. The hive does not require additional maintenance work from beekeepers. The bees showed good performance in it, having given marketable honey a month and a half after settling in the hives in the form of standard packages. During the entire season, there were no manifestations of viral infections in new hives, while the same package in a standard hive developed into a family affected by Varroa mites and wing deformation viruses, etc.

PP-159 [Beekeeping Technology and Quality]

Apivox Smart Monitor - an unique device for quick determination of the state of bee colony without opening the hive

Jose Luis Glebski
Research Dept. Apivox Project, Barcelona, Spain

Within the frameworks of the Apivox Smart Monitor project, we carried out analytical studies of more than fifty works of well-known world-famous scientists and on the basis of their work, we were able to develop the theoretical foundations of acoustic control of bees. Further, several years of practical research in an experimental apiary made it possible to gain an understanding of the true processes taking place in the hive, which are reflected in the acoustic signals of bees. It turned out that in fact, what was previously considered to be the true signals of bees and that those who had been engaged in acoustic control before us tried to analyze and use, turned out to be only the sounds of the wings of bees engaged in various works in the hive. It was found, that it is almost impossible to analyze using FFT instruments and
Antioxidant, phenolic and flavonoid contents of propolis extracts produced by the Western honey bee and stingless bees in Thailand

Gustina Swaranon1, Evada Chotiaroonrat2, Sanchai Naree3, Christopher Mayack1, Nicolas Correax3

1Department of Biology, Burapha University, Chon Buri, Thailand
2Department of Molecular Biology, Genetics and Bioengineering Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
3Department of Biology, University of Ottawa, Ottawa, Canada

Propolis is a natural resinous substance collected by foraging bees from various plant species. Chemical compositions and properties of propolis depend on plant sources, bee species, and climate in the region where the bees collect the propolis. We investigated the antioxidant activity, the total phenolic and flavonoid contents of propolis ethanolic extracts produced by the western honey bee (Apis mellifera) and three “Lettigora” native stingless bees from Thailand, that were collected from seven different locations. Our findings show that the total phenolic content of the investigated samples varied from 6.13 ± 0.13 to 82.85 ± 1.85 mg GAE/g. Flavonoid content ranged from 0.32 ± 0.01 to 19.31 ± 0.15 mg QE/g. These results began to fulfill the lack of knowledge on Reunion Island honeys. The next step will be to carry on the chemical and botanical origins of honey.
Botanical origin and the effect of Native Endemic Species in the antioxidant activity pattern of honeys after ionizing irradiation treatments

Enrique Mejías1, Rodrigo Pizarro2, Carlos Gomez3, Tatiana Garrido3
1Centro de Tecnologías Nucleares en Ecosistemas Vulnerables (CTNEV), División de Investigación y Aplicaciones Nucleares (DIAN), Comisión Chilena de Energía Nuclear (CChEN), Santiago, Chile
2Abielle Consultores, Santiago, Chile
3Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile

In Chile, honey may be produced from several native species with interesting biological properties owing to the presence of phenolic compounds inherited from specific floral sources.

However, climate change has determined several alterations in the flowering calendar of melliferous species, causing a decrease in the availability of food for bees due to the reduced floral supply. In that way, an increase in the prevalence of diseases such as American foulbrood Poenlobacillus larvae, whose spores are highly resistant, has been detected. Similarly, there are markets that demand spore-free honeys, making it more difficult to export bee products.

Recent studies have shown that there is a significant correlation between the phenolic composition, the antioxidant activity, and the color of honey.

In this work, honeys samples of native species (n= 35) produced in northern, central and southern Chile were analyzed for botanical origin, physicochemical patterns, total phenols, antioxidant and anti-radical activity. Honeys with and without spores were subjected to ionizing irradiation at three levels of intensity. Afterwards, the presence of spores and the effect on phenol bioavailability, antiradical and antioxidant activities were measured again.

This study shows the validation of the method for irradiating honeys, besides the most remarkable results of the positive correlation obtained between the presence of native endemic species in the samples analyzed and their capacity to resist this process, without altering the natural attributes of origin.

Digital Twin Approach for Monitoring and Management of Beehives

Ahmet Albayrak, Enver Özçelik, Nuri Melih Şensoy
Department of Computer Engineering, Faculty of Engineering, Duzce University, Konuralp Campus, Duzce, Turkey

In this study, a digital twin application was implemented to manage and monitor beekeeping activities that can be considered within the scope of sustainable and sensitive agriculture. A digital twin is an approach that involves creating a digital model of any physical object to facilitate, optimize and sustain the underlying physical process. Digital twins are promising to make agriculture smarter, more productive and sustainable. A digital twin is the digital equivalent of a real-life object that encapsulates its behavior and state in the digital environment throughout its lifetime. Although it has been stated in the literature that the digitization of beehives is difficult (because the bees and their behaviors are complex and sensitive), testing this situation with digital twins formed the research question and hypothesis of this study. Internal variables such as digital twin hive temperature (°C), humidity (%) and colony weight (kg) and meteorological (temperature (°C), humidity (%), many days (number), wind speed (km/h), cloudy days (number)) were generated with external variables. There are three important layers in the method determined for the digital twin extraction of the beehive. These layers are Device Layer, Digital Twin Layer and Solution layer. The device layer consists of objects whose digital twins are to be produced in the system. In the method applied for this layer, the object whose digital twin is to be removed is the beehive. Sensors are placed on the beehive for the physical quantities to be measured. The task of the digital twin layer is to create the digital twin according to the incoming sensor information, to store and process the data and to provide a connection interface to the solution layer. In the solution layer, the communication between the digital twin and the physical twin and the monitoring of all physical twins are provided in the proposed digital twin architecture. In addition, business processes such as adding/deleting/replacing new digital twins were also managed in this layer. The management of the physical twin is provided with the alerts created for the physical twins in the user interface.
Recently, it has become increasing attention to bee products that are obtained as a result of the honey fermentation process. Some of them can be consumed directly (pollen collected by bees, honey, bee bread, etc.). While others are the result of larvae acidic fermentation. On the other hand, fermented foods and beverages are an essential part of the nutrition culture of any society in the world and have the cultural history of ethnic communities. Also, honey processing has always been considered by food industry experts to produce high value-added products. The purpose of this study was to produce fermented honey extract by special honey fermentation method. The process of lactic fermentation of pollen is caused by microorganisms that are present spontaneously in the bee hive, used under anaerobic conditions to produce a fermented extract of thyme honey (natural and organic) in the Kurdistan region of Iran. In the production process of fermented extract, control of ambient temperature and natural yeasts produced by bees have been used. In this process, honey sugars decompose over time and at specific controlling temperatures. The amount of fungal material was also controlled during the process. The whole process of producing fermented honey extract took 4 months. The volatile properties of this product have been extracted by the Chemistry Laboratory University of Tehran. The results showed that the main components of this product included: (47%) geranyl acetate, neral (23%), geranial (12%), geranium (7%), nerol (5%), farnesol (3%). Due to the percentage of compounds in this extract, it can be used as a medicine, food additive and perfume industry.

PP-194 [Beekeeping Technology and Quality]

Investigation of the Status of Monofloral Sidr honey in the Middle East

Mohammad Rafahi
Research and Development Unit of Mr. Honey Co. Qom, Iran

Sidr tree is one of the oldest native trees in the Middle East, which is very sacred and valuable in these areas. The genus Ziziphus has more than 100 species in the world. The most important species of this genus are Ziziphus spina-christi, Ziziphus mauritiana and Ziziphus jujuba. Ziziphus species are in the form of trees and evergreen shrubs with a height of 2 to 15 meters. This plant is thermophilic and its geographical distribution is in Morocco, North Africa, Saudi Arabia and warm parts of Iran to India. Indigenous areas along Z. spina-christi include the Persian gulf, Egypt, Syria, Palestine, Lebanon, Jordan, Iraq, Iran, Afghanistan, Pakistan and India. In recent centuries it has spread to other parts of North, Central and East Africa. The flowering season is late summer to early autumn, and several million bee colonies migrate from the surrounding areas to the Sidr forests each year. Honey production from each Sidr tree is estimated at about 3 kg and 750 kg per hectare. Sidr honey is one of the most well-known and high-quality honeys in the world, which is also known as Manuka honey of the Middle East. Annual Sidr honey production worldwide is estimated at 5,000 tons and the highest Sidr honey production is in Iran, Yemen, Saudi Arabia, India, Pakistan, Egypt, Algeria, Oman, Libya, Sudan, Ethiopia, Iraq and Kuwait, respectively. Sidr honey has a very high customer value due to its medicinal properties and unique sensory analysis. The active ingredients of Sidr honey include minerals, organic acids, amino acids, flavonoid compounds and a variety of glycosidic and steroid saponins, especially the Christinin A compound. The most important benefits of Sidr honey are regulating the immune system, high antibacterial effect, antioxidant, anti-inflammatory and healing wounds and infections. Sidr honey as a monofloral honey of arid and tropical regions in the world, is of great importance in terms of quality indicators and health, and the need for further research on the active ingredients of the drug and its quality grading is felt in global markets.

PP-199 [Beekeeping Technology and Quality]

Modified Langstroth Frame

Abraham Alotey1, Perry Mankattah2
1Resource Management Support Centre, Forestry Commission, Ghana
2Mankattah Bee Farms

The Langstroth Frame (L.F) fundamental functions has always been 1. Honey production 2. Honey bee queen rearing and colony multiplication Since its invention in 1752 To improve on its functions, the LF has been modified to provide two (2) additional functions have been innovated through the development of a new frame that is easily assembled to the existing ones. The slit or groove-like components along the `legs` or height of the LF allows for fixing horizontal accessories such as 1. U-shaped pipes on the LF as feeder 2. Inserting of propolis mesh on the LF for commercial propolis harvesting 3. Fixing multiple small beetle traps on the LH The groove is a two-omega shaped mechanisms with one inverted and placed under the normal omega shape feature. This allows for a slot and lock-in system to be created for other accessories to be attached. This innovation will enhance the functions of the current LF and will allow for further innovations to be fixed on the LF to improve on its productivity.
Effects of Feeding Advanced Chelate Technology-Based Trace Minerals, Bonza®Bee, to Adult Honey Bee Workers (Apis Mellifera L.) Under Laboratory Conditions

Vahid Ghasemi1, Mohammad Hassan Nazaran2, Ghohamali Nezhati3, Seyed Ehsan Torabi4, Somayeh Kalanaky5, Sadeh Fakhrazaed4, Zahra Sadat Arzanforoosh6, Reza Bidesha7, Maryam Hafiz8

1Division of Honey Bee, Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
2Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
3Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

BACKGROUND: Honey bees require macronutrients and micronutrients for optimal growth and productivity at different stages of the lifecycle. Mineral elements are essential for honey bees in relatively small quantities. Advanced chelate compounds technology is a novel field for synthesizing efficient chelated mineral supplements for the livestock industry.

AIMS: This study aims to evaluate the effects of a new chelated mineral supplement on several nutritional and physiological values of worker honeybees. This feed supplement, named Bonza®Bee, is synthesized based on Advanced chelate compounds technology by Sodour Ahrar Shargh Company (SASh Co.) and contains the elements of calcium (6000 ppm), phosphorus (5000 ppm), magnesium (3000 ppm), iron (300 ppm), manganese (200 ppm), copper (150 ppm), zinc (150 ppm), selenium (0.3 ppm), chromium (0.1 ppm) and cobalt (0.1 ppm).

MATERIAL-METHODS: The impacts of the Bonza® Bee supplement on nutritional indices, hypopharyngeal gland growth, energy content, and tolerance to a toxicity dose of sublith dimethoate have been studied on a laboratory bench-scale.

RESULTS: Relative growth rate, relative consumption rate, and efficacy of conversion of ingested food significantly increased in worker honey bees that have been fed with Bonza®Bee. The analysis showed that 59% of the analyzed honeys belong to the first two categories of quality (excellent and good), 30% are of average and still acceptable quality and 11% are of unacceptable quality.

CONCLUSION: Bonza®Bee, a chelated mineral supplement, can improve the nutritional and physiological values of the honey bee.

Maghsoud Besharati1, Mohammad Hassan Nazaran2, Reza Bavand3, Somayeh Kalanaky4, Sadeh Fakhrazaed4, Reza Bidesha7, Zahra Sadat Arzanforoosh6, Maryam Hafiz8

1Department of Animal Science, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Iran
2Research and Development Department, Sodour Ahrar Shargh Company, Tehran, Iran
3Department of Animal Science, University of Tabriz, Tabriz, Iran

Minerals play a very important role in the metabolism and safety of all fauna, including honeybees. Despite the importance of minerals in the body’s metabolism, their use in bee nutrition has not been given much importance. The use of chelated mineral supplements in bee nutrition has not been common due to its unavailability. Based on advanced chelate compounds technology, for the first time, a chelated mineral supplement called Bonza®Bee has been specially synthesized for honeybees. In the present study, the effect of different levels of Bonza®Bee supplement administration on functional traits, intestinal bacterial population, activity of digestive enzymes, intestinal morphology and honeybee mortality has been investigated. This experiment was performed in a completely randomized design with 6 treatments and 7 replications for 60 days.

In order to reduce the error, sister queen and peers were used. The results of this study showed that at different levels of Bonza®Bee, honey yield increased by 100% on average compared to the control group. In addition, with the use of this supplement, laying rate and hive population increased significantly compared to the control at the level of 1% (p<0.01). The population of Lactobacillus and the population of intestinal coliforms were significantly higher and lower than the control, respectively. Phenol oxidase and hemoxyte levels were also significantly higher (p<0.05) in Bonza®Bee group. In general, in the administration of Bonza®Bee syrup, laying rate and hive population, improved gastrointestinal bacterial population and strengthened the bee immune system. Due to the significant increase in honey production, this supplement is recommended as a cost-effective additive for the beekeeping industry.

PP-203 [Beekeeping Technology and Quality]

Comparison of total phenolic content and antioxidant activity of Indonesian propolis extracted with various solvents

Oash Kartika Pratama,1 Nur Elistani Eksidatta,2 Muhamad Sahlan,2 Abdul Mannim3

1Doctoral Program of Pharmacy and National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia; Laboratory of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Pancasila University, DKI Jakarta, 12640, Indonesia
2Department of Chemical Engineering and Research Center for Biomedical Engineering, Universitas Indonesia, Depok, West Java, 16424, Indonesia
3Department of Pharmacognosy-Phytochemistry and National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia

Propolis (bee glue) is a sticky material collected by bees from plant resin. It has been proven to possess numerous beneficial pharmaceutical properties, such as: antibacterial, antiviral, antioxidant, anti-inflammatory, immunostimulant, hepatoprotective, cytotoxic, etc. Nowadays, propolis is a popular remedy all over the world, and is available in either pure form or combined with other natural products in over-the-counter preparations, cosmetics, and as a constituent of health foods. Propolis has a variable chemical composition due to the fact that honey bees collect it from a variety of plants in various habitats and seasons. Propolis is produced by bees to protect their colonies from intruders and predators. Propolis is composed of plant resins, organic acids, sugars, flavonoids, and other plant products. In order to extract propolis, I used maceration method by sun-drying. The propolis sample used in this study was obtained from the north of Luwu district, South Sulawesi Province, Indonesia. The propolis sample was extracted with various solvents such as ethanol, propylene glycol (CCPG), choline chloride-glycerol-water (CCGW), and citric acid-propylene glycol (CAPG). Nectaria sapiens bees were taken from five different regions in the Republic of North Macedonia.

PP-202 [Beekeeping Technology and Quality]

Comparison of total phenolic content and antioxidant activity of Indonesian propolis extracted with various solvents

Oash Kartika Pratama,1 Nur Elistani Eksidatta,2 Muhamad Sahlan,2 Abdul Mannim3

1Doctoral Program of Pharmacy and National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia; Laboratory of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Pancasila University, DKI Jakarta, 12640, Indonesia
2Department of Chemical Engineering and Research Center for Biomedical Engineering, Universitas Indonesia, Depok, West Java, 16424, Indonesia
3Department of Pharmacognosy-Phytochemistry and National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia

Propolis (bee glue) is a sticky material collected by bees from plant resin. It has been proven to possess numerous beneficial pharmaceutical properties, such as: antibacterial, antiviral, antioxidant, anti-inflammatory, immunostimulant, hepatoprotective, cytotoxic, etc. Nowadays, propolis is a popular remedy all over the world, and is available in either pure form or combined with other natural products in over-the-counter preparations, cosmetics, and as a constituent of health foods. Propolis has a variable chemical composition due to the fact that honey bees collect it from a variety of plants in various habitats and seasons. Propolis is produced by bees to protect their colonies from intruders and predators. Propolis is composed of plant resins, organic acids, sugars, flavonoids, and other plant products. In order to extract propolis, I used maceration method by sun-drying. The propolis sample used in this study was obtained from the north of Luwu district, South Sulawesi Province, Indonesia. The propolis sample was extracted with various solvents such as ethanol, propylene glycol (CCPG), choline chloride-glycerol-water (CCGW), and citric acid-propylene glycol (CAPG). Nectaria sapiens bees were taken from five different regions in the Republic of North Macedonia.

PP-201 [Beekeeping Technology and Quality]

Sensory Analysis of Polyfloral Honey from Different Regions in the Republic of North Macedonia

Hrisula Kiprijanovska1, Miroslav Golubovski2

1Institute of Animal Biotechnology, Republic of North Macedonia
2Cry. Cyril and Methodius University in Skopje, Faculty of Agricultural Sciences and Food, Skopje, Institute of Animal Biotechnology, Republic of North Macedonia

The increased demand for honey on the market imposes the need for adequate and continuous monitoring of the quality and availability of honey available on the market. Determination of honey quality involves complex examinations of organoleptic and physicochemical properties using appropriate methods.

Sensory Analysis allows the determination of organoleptic indicators of honey using a descriptive method. Honey is described visually and via tasting. It is also important because it can detect some defects of honey such as: fermentation, impurities, external odors, atypical taste and etc.

This type of analysis is mostly used when organizing exhibitions to promote and popularize beekeeping, honey and other honey bee products.

The sensory samples (n=17) that were subject to this sensory analysis were taken from five different regions in the Republic of North Macedonia.

Sensory analysis of the samples was performed in the Beekeeping laboratory of the Faculty of Agricultural Sciences and Food in Skopje by five tasters. The sensory characteristics (purity, clarity, smell, taste and additionally the percentage of water) were evaluated according to a five point scale (1-5) and multiplying the grade by a factor of influence for each characteristic (0.5 for purity, 0.5 for clarity, 1.0 for smell, 1.6 for taste and 0.4 for percentage of water). Analyzed samples were grouped in five quality categories according the total number of points scored (average of the evaluations of the five tasters).

The analysis showed that 59% of the analyzed honeys belong to the first two categories of quality (excellent and good), 30% are of average and still acceptable quality and 11% are of unacceptable quality.
Many different products, especially honey, are obtained from honey bees. One of these is royal jelly, whose weight is 60 times more valuable than honey. Royal jelly is secreted from the glands of young worker bees and used for feeding bee larvae. However, its production is arduous and can only be done in a limited time frame. Although royal jelly is very valuable, the main reasons for the low production are that the production process of royal jelly is a difficult and long process, and the need for good organization, more than one experienced beekeeper and milking workshop. The most time-consuming process in production is the transfer of larva and royal jelly milking by humans. In order to accelerate this process and increase the production of royal jelly, human labor should be reduced. For this, the ideal size for the production of royal jelly in the honeycomb cells, the larvae between 15-18 mm should be detected and transferred to appropriate thimbles and hives. The BeePlant royal jelly machine analyzes the hives with image processing and determines the position and characteristics of the healthy larvae in the honeycombs by image processing, automatically collects the larvae without any damage, transfers them to the thimbles, and provides royal jelly. BeePlant is a mobile hive that requires experience, provides difficult and expensive royal jelly production in accordance with industry 4.0 standards, with high efficiency and quality. By providing the necessary larva transfer and harvesting with image processing technology, it is aimed to reduce the intensive work of an average of 5 beekeepers for 100 days by at least 72% and to increase the royal jelly yield by 2 times. Thanks to BeePlant, we aim to select the beehives to be selected during the preparation phase of beekeepers starter, feeder and breeder colonies with an accuracy rate of up to 85% with the image processing method, and to prepare and harvest bee thimbles untouched by the larva transport system. With the product and method we will develop, we aim to reduce the production costs of quality royal jelly by 40% while protecting bee health.

Methods to detect wax and honey fraud

Kodjo Logou Agossou
ORPAAS

Fraud is the attempt to make an abnormal object appear to be in conformity. The effectiveness of its detection, depends on two parameters, namely the sharpness of the characteristics of the reference object and the precision of the comparative analysis of it with a sample. What are the characteristics of honey that of capped wax comb cells loaded with nectar and/or honeydew derivatives? Rats of course from the genetically unmodified honeybee? What is the status of wax of this same species? What would be the appropriate methods for their recognition? As regards honey, it is very complex to define its physical or even chemical characteristics. Indeed, any nectar plant can have its honey just like any honeydew. Now, each plant has a given expression in a given ecology while the ecosystems are very varied. And as much as there is a combination of nectars there will be honey as these sweet solutions are the seat of enzymes and chemical molecules specific to each species and therefore likely to interfere. This is demonstrated by the fact that in the same hive the bees take care to separate even during the same honeyflow according to the colors.

Honey has a complex chemical structure consisting of sugars, proteins and lipids, vitamins, minerals, phenolic and volatile compounds. Although the chemical composition of honey varies according to its geographical and botanical source, there are more than 150 components in its structure. Therefore, honey consumption is very important for human nutrition. People have used honey for both nutritional and therapeutic purposes since ancient times. In addition to being among the main components, sugars in honey are an important parameter for the detection of possible adulteration. Therefore, determining the sugar profile of honey is an indispensable part of quality control. In this study, it was aimed to determine and compare the sugar profile of honey produced in Bingöl-Turkey (B) and two other regions (D and E) by HPLC method. The determination method is HPLC analysis with refractive index detection and requires a refractive index detector (RID). The method allows the determination of the four main sugars of honey (fructose, glucose, sucrose and maltose).

A result of this study, the mean and standard deviation of honey samples (B, D, E), respectively, for fructose B: 37.86±0.76%, D: 38.01±0.67%, E: 36.72±0.72%; for glucose B: 32.14±0.54%, D: 33.89±0.71%, E: 32.24±0.63%; for sucrose B: 1.32±0.49%, D: 2.82±0.55%, E: 2.19±0.67%; for maltose B: 1.32±0.49%, D: 2.82±0.55%, E: 2.19±0.67%; for maltose B: 2.51±0.81%, D: 1.11±0.79%, E: 2.19±0.83%. The results found in the study are compatible with the literature data.
Anatomy, Physiology, Taxonomy and Genetics, 2) Applied beekeeping (Traditional Beekeeping, Modern Beekeeping and Migratory beekeeping), 3) Scientific beekeeping (Bee management, Bee products and value addition, Bee economics, Bee health, bee diseases, Bee poisoning, Bee flora, Bee pollination, Bee park, Bee museum), 4) Advanced technology (Bee Breeding & Mass Queen rearing, Bee decline assessment and restoration, Honey testing laboratory, disease diagnostic laboratory and Integrated Beekeeping Development Centre), 5) Success stories of beekeepers, 6) Real time communication with bee experts and 7) FAQ’s. The results revealed that UHS Bee App scored five-star ratings with more than 75 percent acceptability by the end users as compared to the other popular bee apps. The Results indicated that UHS Bee app supports in upgrading the existing apiary methodologies and creating awareness on scientific beekeeping, capacity building of farmers with modern beekeeping techniques, bee breeding, multiplication of nucleus colonies and providing pollination service for sustainable production and productivity of both agricultural and horticultural crops. Further, this will also help to prioritize researchable issues and identification of new areas which needs immediate attention by scientific institutes and policy makers alike. Therefore, UHS BEE-APP is a ready reckoner to provide a complete solution on beekeeping for a better world.

PP-223 [Beekeeping Technology and Quality]
Features of Development of Urban Beekeeping in Ukraine in Present-Day Realities
Tetyana Vasylkivska, Anatoliy Kharkovenko, Borys Shyrkaretsky, Oleksandr Stoliarov
1NGO Brotherhood of Ukrainian Beekeepers, Lviv, Ukraine
2Association Professional Pollination of Agricultural Crops, Kyiv, Ukraine
3LLC Mobile Soft, Kyiv, Ukraine
4LLC Beehouse, Kyiv, Ukraine

Ukraine is one of the five world leaders in honey production. Ukraine produced 68,000 tons of honey in 2020 according to the UN FAO information. 99% of Ukrainian honey is being producing on private farms.

Almost all bee colonies in Ukraine are concentrated in rural areas. There are isolated cases of small apiaries in cities. In order to develop the recommendations for the sustainable development of urban beekeeping in Ukraine, in May 2021 we created an experimental urban apiary on the roof of a 27-storied building (110 m above the ground and 285 m above sea level) in Kyiv, Ukraine.

Bee colonies were placed in polystyrene foam hives, equipped with a unique BeeData smart system (which monitors weight, temperature, humidity, sound and flight activity of bees). Additional surveillance IP PTZ camera is also installed. From May 2021 to May 2022 our experimental apiary has been constantly monitored while performing regular routines and tests on bee colonies.

During this time effects of high and low temperatures on the bee colony, effects of excessive winds, city noise and especially effects from civilian fireworks and hostilities explosions have been spotted and carefully analysed. Thus, we have developed recommendations for:
- prevention of possible risks of apiary placement in settlements;
- minimizing specific urban and high altitude (above ground) location risks and negative factors;
- prevention of uncontrolled swarming;
- providing high-quality spring development of bee colonies;
- honeycomb management;
- preparation of bee colonies for wintering and arranging wintering process itself;
- amendments to the applicable national legislation.

The samples of honey collected on our experimental urban apiary were tested for the content of 18 agricultural and urban contaminants (including pesticides, heavy metals and radionuclides). The species composition of pollen grains was determined separately. Conclusion is as follows - honey collected in the experimental urban apiary is suitable for human consumption. Moreover - by some quality and safety indicators this honey is cleaner and better than one collected in rural areas.

Results obtained are especially valuable for further researches on sustainable development of urban beekeeping and biodiversity care in Ukraine.

PP-224 [Beekeeping Technology and Quality]
The effects of bee venom production techniques on venom quality and amount
Goldben Aydoğdu, Hasan Hüseyin Oruç
Bursa Uludag University, Institute of Health Sciences, Faculty of Veterinary Medicine, Pharmacology and Toxicology

The aim of the study was collection of bee venom samples from front of the hive and inside of the hive with two different bee venom collectors in Anatolian honey bees (Apis mellifera anatolica), to determine collected bee venom amounts, analyze of the samples for apamin, phospholipase A2 and melittin, and to evaluate obtained results. Totally, 20 bee venom samples were collected consist of eight of honey bee samples were collected from front of the hive, and 12 bee venom samples were collected from inside of the hive for 30 minutes. The samples were collected between 6-8 May 2022 in Kazdağlar mountain located at 800 meters in spring time in Turkey. The surface areas of bee venom collectors were 280 cm2 and 480 cm2. Bee venom samples analyzed by HPLC-DAD system for apamin, phospholipase A2 and melittin. The mean level of the five samples that collected from front of the hives (280cm2) was 38.7±14.2mg and was 42.5±13.7mg for inside of the five hives (480cm2). The mean levels of apamin, phospholipase A2 and melittin (n=5) were 0.7±0.1, 0.2±0.09 and 3.2±0.28 for front of the hives; were 5.1±0.4, 0.4±0.15 and 6.18±0.60 and totally (n=10) both front and inside of the hives were 10.0±0.2, 6.3±0.8 and 15.7±3.2 respectively. As a result, however the amount of bee venom samples from front of the hive (280cm2) was generally lower than inside of the hive (480cm2). However the mean levels of apamin, phospholipase A2 and melittin collected front of the hives were lower than the mean levels of apamin, phospholipase A2 and melittin collected inside of the hives, this situation was not important statistically (p=0.690 for apamin, p=0.841 for phospholipase A2 and p=1,000 for melittin). Totally (n=20), levels of apamin, phospholipase A2 and melittin were generally lower than the levels of similar research results. Many factors can affect honey bee venom production and its quality such as; honey bee race, age of bees, colony strength, season of collection, feeding supplies, race, and its defense behavior.

PP-227 [Beekeeping Technology and Quality]
The effect of production time and season on the harvesting amount of bee venom collected from Yığılca ecotype of Apis mellifera anatolica
Tuğçe Çaprazli, Meral Kekeçoğlu
1Department of Plant and Animal Production, Beekeeping Program Düzce University, Düzce Turkey
2Department of Biology, Düzce University, Düzce Turkey

Honeybee venom is an exocrine secretion that is secreted by the venom sac to protect their colonies and injected into the target organism through their sting apparatus. Honeybee venom is a considerably new product that medical importance and usage areas are developing day by day with new scientific researches. The increasing market demand for this product due to its enlarging use in both cosmetics and health, opens a new market to the beekeepers. Honey bee venom became one of the most commercially valuable products with the prices varying from $300.00 USD up to $3000.00 per gram. For this reason, it is important to determine the most productive season and time in terms of production amount and sustainability. In our study, Yığılca ecotype colonies, which are endemic to the Yığılca district of Düzce, Turkey, and under field protection, were used. The study was carried out with colonies of equal strength with sibling queens. In the study carried out between July and September 2021, the groups were divided into three different groups morning, noon and night, with 8 colonies in each study group. A total of 120 samples, 40 samples from each group, were evaluated. As a result of the statistical analysis, no difference was detected between the months, but the highest harvest quantity among the harvesting time groups was detected in the nighttime with an average of 0.09 g/hive. When the results of the study were evaluated, the highest amount of venom was obtained from the right groups, regardless of the month during the nectar flow season. Whether there is a difference in terms of colony welfare between the time difference groups with future studies should be investigated and evaluated in terms of sustainable production.
Royal jelly, propolis, and bee pollen are used for different purposes all around the world according to their anti-inflammatory, antioxidant, and antimicrobial activities. Given that Coronavirus 2019 (COVID-19) is a viral condition accompanied by a dysregulated inflammatory response in the body, we intend to evaluate the effects of natural supplementations on the disease course. A randomized, open-label, controlled trial was conducted among 50 definitive cases of COVID-19. These patients were randomly assigned into control and intervention groups. Royal jelly, propolis, and bee pollen were prescribed to patients in the intervention group (n = 24) in addition to conventional treatment; while the control group only received the standard treatment (n = 26). At the end of the study, functional class improved in both groups, but this change was more pronounced in the intervention group (p < 0.05). In this presentation we are going to be discussing the method of production, extraction and creation of api mix products and the beneficial effects it has on the COVID-19 virus.

Invention of honey bee safety intelligent system and honey increaseasement (Apis mellifera) and the effect of temperature control on bee behavior

Hassan Azmi1, Hossein Yeganeh Rad2, Mona Defanian1
1Department of Computer Engineering, Middle East Technical University, Ankara, Turkey
2Department for Zoology, University of Graz, Graz, Austria

like other insects, the life of bees depends on temperature and they react differently to temperature changes. Therefore, by controlling the internal temperature of the bee’s hive, their different reactions to temperature changes can be evaluated. The safety intelligent and honey consumption (SIHI) system was registered with the patent number 976773 at 25/01/2017, the international classification code A01K 47/06. Iran. The SIHI system has been popular among beekeepers from 2016 and its consumers are constantly increasing. This system based on the regulation of the hive’s temperature leads to an increase in bee’s products. The SIHI system can greatly reduce the consumption of honey in the hive and increase their honey production in spring due to their extremely high population compared to another hive. This system also reduces the reproduction time of the queen bee and the drone bees by controlling the hive behavior. Reports showed that beekeepers who used the SIHI system in the winter were able to maintain the hive temperature within a certain temperature range. So that, the bees spent the winter without any stress and had a great spring start.

The authors were alphabetically ordered.
The effect of different propolis extracts on biological activities

Ibrahim Demirzic,1 Adem Necir2
1Department of Pharmacy Services, Health Services Vocational School, Harran University, Şanlıurfa, Turkey
2Department of Biochemistry, Faculty of Science and Arts, Iğdır University, Iğdır, Turkey

Propolis is a resin-like material that bees make using plant materials such as poplar and buds. Bees use it to keep their hives hygienic and may contain hive byproducts. Propolis is known to be effective against bacteria, viruses, and fungi. It may also have anti-inflammatory effects and improve the skin health. Propolis is not found in its pure form and is usually obtained from beehives. People use propolis as a dietary supplement in many diseases such as diabetes, herpes, and swelling and wounds in the mouth. It is also used for burrs, canker sores, genital herpes, and many other conditions, but there is not enough scientific evidence to support these uses. In addition, although there is no definitive evidence to support the use of propolis for COVID-19, there are many studies. In this study, antioxidant and antimicrobial activities of propolis samples collected from different regions and their extracts will be presented. In the studies, it was determined that the vegetation in the areas where propolis was taken, the extraction method, the solvent used, and the extraction times were effective on the activities. The dilution method was used for the determination of antimicrobial activity. The dilution method can be done in two different ways: broth dilution and agar dilution method. As a result of the antimicrobial test, it was observed that propolis has a very good inhibitory effect on some bacterial species. It was observed that the inhibitory effect against Bacillus cereus in the extracts obtained with water and DMSO was less than the extracts obtained from ethyl alcohol and propylene glycol. When the optical density of the control group grew by 1.7 Mcfarland in the ethyl alcohol extract, it was measured that Bacillus cereus grew by 1.2 Mcfarland. In the extracts obtained from DMSO and propylene glycol, the control group grew by 1.2 Mcfarland. It was observed that the inhibitory effect against Bacillus cereus was greater in the extract obtained by the agar dilution method.

Physicochemical properties and authenticity of honey samples obtained from the world market

Aslı Elif Tanılık Karacan, Taylan Samancı, Elif Yorulmaz Önder, Engin Özçürek

The quality of honey is an important grading factor for the international honey market. The classical approach to verify the origin of honey is based on pollen analysis, sensory analysis, physical and chemical methods. In this study, 50 honey samples which had been purchased from different shops in the world were investigated on the basis of their physicochemical, chemical and antioxidant properties. Moisture, conductivity, diastase, proline, acidity, HMF, invertase, sugar profile, C4 plant sugars parameters were studied according to standard analysis methods. Total phenolic, flavonoid contents, total antioxidant capacities of the samples were analyzed with spectrophotometer. The pollen types of the samples were also investigated with microscopic analysis. It has been determined that many samples do not comply with the criteria specified in the standards. It is the most significant step to ensure that consumers are correctly informed about the products. Moreover, honey standard should be re-established to prevent unethical competition in the market. Parameters that will both prevent the sale of non-authentic honeys and to categorize the honeys in the market according to their quality should be added. In the animal and insect kingdom, all behaviours are directly regulated by pheromones. As queen bee pheromones regulate the majority of the honey bee behaviours, when extracted, we can influence the behaviours of bees to focus on what is important for the survival of the colony. Nutrition and raising healthy brood. By supplying the bees with micro doses of pheromones from drone, worker, and queen larvae, we can improve the queen's rearing programs to 95% acceptance, combine populations without experiencing conflict, increase their consumption, fix nutritional deficiencies, and reduce the amount of chemical intervention needed when conducting disease & pest management control. This way, you can ensure your final product is a non-chemical residue honey. When comparing our control group (n = 100) and our intervention group (n = 100), we found that queen acceptance was as high as 95%. The fertility of drone bees from 40% to 95%, and no eggs were being discarded due to nutritional deficiencies.

Introduction Of Caspian Solution for Queen Production

Hossein Yeganehrad1, Amir Sharbati2, Mahmoud Kiajoujari3, Pooyah Pish Bahar4, Zahra Azarae6
1Caspian Solution, Iran
2Department of Biochemistry, Faculty of Science and Arts, Iğdır University, Iğdır, Turkey
3Department of Biochemistry, Faculty of Science and Arts, Iğdır University, Iğdır, Turkey
4Pooyah Pish Bahar
5Mahmoud Kiaojouiri
6Zahra Azarae

The efficiency of queen production, queen introductions, mating, and level of semen production is directly related to the level of nutrition that is given to the bees. There are few factors that impact this besides nutrition, such as disease and other environmental factors. Our studies in Iran, Turkey, USA, Mexico, and Canada have researched in commercial and hobby applications to finalize the cause of supersEDURE and to improve the quality/ performance of aging queen’s in changing / new conditions. With the Caspian Method, we provide access to nutrients for the drones, and as a result they will have higher fat deposits and we can improve their fertility and keep them for the entire season. As queen acceptance is an expensive duty for beekeepers, Caspian Solution enables an effective, scalable system for queen production. The supplementation of Caspian Solution will bring queen acceptance rates for 60% to 95%. In this presentation we are comparing the conventional method’s with the Caspian Method and teaching people optimal techniques for queen production.

Al-Driven climate-smart beekeeping (AID-CSB) for women - lessons from localizing a hive management app across Ethiopia, Uzbekistan, and Lebanon

James Wilkes1, Max Runzel2, Sarah Denton1, Laura Becker2
1LiveTracks, Inc. Creston, North Carolina, United States of America
2International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon

Healthy plant-pollinator relationships are essential for local food systems across diverse landscapes. Globally, honeybees are one of the most important providers of ecosystem services and are managed locally to support agri-food systems. The health of honeybees is an indicator of environmental health, and deteriorating honeybee health can be traced back to changes in land use, climatic conditions, and input-intensive agricultural practices. Hence, keeping track of the health of honeybees, which offers value to stakeholders beyond beekeepers, has become an essential component of the beekeeping activity.

Digital hive management applications have been proposed to track honeybees’ health over time and reduce losses through improved management decisions for beekeeping operations. However, these solutions often lack a user-centric design approach or operate in a silo, disregarding the potential benefits from augmenting primary beekeeping data with secondary data sources, including weather, community activity, and blooming data.

While beekeeping is an essential part of most cultures worldwide, women beekeepers are often underrepresented. Technology offers an opportunity for women to increase their participation in beekeeping as the benefits of technology-powered beekeeping enable more efficient beekeeping by increasing the ability to manage healthier colonies and facilitating the communication within the local beekeeping community while decreasing the overall time required to manage healthy hives. However, women are often not involved in the design and development process of technology-powered products in general and in agriculture-related fields in particular. Hence, developing technology in an inclusive and participatory manner has the potential to increase both the adoption of technology and the data uptake that is required to monitor and evaluate plant-pollinator interactions in agri-food systems locally and regionally.

AI-Driven Climate-Smart Beekeeping is an initiative that brings together partners from the private and public sectors to localize and customize a hive management mobile app working with women beekeepers in Ethiopia, Lebanon, and Uzbekistan. The results and recommendations from the two-year project enable policymakers, technology companies, and international organizations to draw valuable lessons for gender-transformative and participatory technology development across cultures with the goal of increasing data uptake on plant-pollinator interactions by beekeepers.
Digital advisory and extension services for beekeepers - how beekeeping experts can leverage technology to share region- and season-specific recommendations with the help of an app in Lebanon and the United States

James Wilkes1, Max Runzel¹, Sarah Denton¹, Laura Becker2
¹HiveTracks, Inc. Creston, North Carolina, United States of America
²International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon

The increase in pressure on honey bee health accelerated by changes in land use, the frequency and impact of adverse climatic events, and input-intensive agriculture render adhering to good beekeeping practices even more important and ever more complex. Notably, the need for timely localized, and personalized advisory continues to amplify the limitations of extension services and traditional mentorship relationships. This is of particular importance across the Global South where the impact of a changing climate and the lack of funding are significant. We present two examples of leveraging digital technology solutions to deliver timely and geographically relevant advisory and extension services for beekeepers.

Funded by USDA-SARE, HiveTracks collaborates with the University of Minnesota BeeSquad to make digital beekeeping mentoring a reality. With a mobile, offline-capable hive management app and a web-based platform for staff and volunteer mentors, the project is to enhance existing educational and mentoring activities by enabling experts to send personalized, actionable recommendations and text-based notifications to nudge people to adhere to region-specific best practices. The web-based admin portal allows the BeeSquad to observe and interact with target beekeepers in a given area who experience a particular disease, fall behind on their beekeeping schedule, or request advice. Simultaneously, the admin portal is being tested and developed further with input from experts at the Lebanese Agricultural Research Institute (LARI) in cooperation with regional beekeepers to ensure its functionality across geographies and language boundaries (Arabic/English). This project uses an iterative, co-participatory development process that involves stakeholders in identifying challenges and requirements by engaging the users interface and experience, and the handling of potentially sensitive data like apiary locations and management practices.

These projects offer valuable lessons for decision-makers across private and public sectors within the beekeeping industry. Combining a mobile, offline-capable app and web-based expert capabilities shows tremendous potential to further the digitization of advisory and extension services. In doing so, it addresses the need for the more efficient administration of beekeeping-related advice from governmental and non-governmental organizations vis-à-vis stricter budget constraints while addressing beekeepers’ needs for timely and localized advisory advice.

Data-driven authentication of varietal honey for improved product differentiation - the example of sourwood honey

James Wilkes, Max Runzel
HiveTracks, Inc. Creston, North Carolina, United States of America

Honey authentication persists as a global challenge to the beekeeping industry despite advances in lab testing with NMR and other lab techniques as well as increased awareness from regulatory governmental agencies, and more discerning honey buyers and consumers. For this reason, use cases for the use of data can be used to validate and authenticate a specific honey varietal by creating a digital identity that can be used by the beekeeping community and honey markets to improve product differentiation in a producer- and consumer-friendly way.

Sourwood honey is a highly sought-after varietal honey with a unique flavor profile produced from the nectar of sourwood trees in a very limited geography in the Appalachian mountain region of the US. The beekeeping management required to produce varietal honey like sourwood honey requires experience and attention to detail as well as access to apiary locations that produce a good varietal crop while not mixing with other nectar sources. As for most varietal honeys, these constraints mean there is a lower supply of authentic sourwood honey relative to the demand. The price per pound for sourwood honey compared to other is in the 15-2x range in the same market and even higher in specialty markets. This environment provides an opportunity for selling mislabeled or adulterated honey as sourwood honey.

To date, common testing methodologies have proven to be costly, cumbersome, and ineffective in the case of sourwood, while an abundance of digital information already in place has failed to produce a coherent system that authenticates honey origin and veracity in a producer- and consumer-friendly way. The case study presented offers valuable lessons learned around how the aggregation of beekeeper data, including management actions, weather data, and IoT data, into a coherent digital honey profile, can facilitate cost-efficient and user-friendly product differentiation. This work has the potential to benefit beekeepers of varietal and specialty honeys around the world and facilitate accessing new markets and achieving higher margins while lowering the costs of authentication.

Population and brood levels are key parameters for measuring hive development and health. Beekeepers usually perform invasive inspections on their hives to assess traits such as brood and adult bee population levels. Ongoing manual monitoring is labour intensive and stressful for bee colonies. Therefore, commercial beekeepers typically limit monitoring frequencies and avoid monitoring couple of weeks per hive, and avoid inspecting in adverse weather conditions. Such sparse monitoring often results in late identification of diseases and other stress factors which can be detrimental to the health of bee colonies. Researchers have shown an increasing use of non intrusive hive monitoring systems, both in academic research and in the private sector. However, such attempts have often shown insufficient results, due to limited or non-accurate data acquisition processes. In this study we equipped 22 Langstroth hives in California with audio, temperature, humidity, CO₂, and VOC (volatile organic compounds) sensors, and continuously measured them for 6 months. We coupled these measurements with detailed weekly assessments that included population, brood, honey, pollen and varroa mite levels to obtain a large and accurately labelled dataset. We then preprocessed the data and trained several Machine Learning models to predict hive traits over time. We found that using the sensor data can significantly improve the prediction of population and brood for unseen hives compared to a baseline average. However, we didn’t (yet) find a way to reliably predict honey and varroa levels using these sensors. In this task we will discuss the data logging system, the data preprocessing and the modeling results.

The Beehome System by Beewise Technologies LTD

Hailid Ian Schreier, Eliah Radyner, Saar Safya, Yossi Sonin, Boaz Petersil
Beewise Technologies LTD.

Pollination is crucial to life on the planet. Bees and other pollinators have thrived for millions of years, ensuring food security and nutrition, and maintaining biodiversity and vital ecosystems for plants, humans, and animals. Globally, three out of four crops grown in the world, and one out of three crops for human consumption depend on pollinators for sustained production, yield and quality. Recent decades have seen heightened concern about honeybee mortality rates in many regions of the world. The seemingly unpredictable loss of bee colonies exacerbates the shortage of pollinators leading to concerns that pollination deficits limit crop production. Recent studies have identified the causes of the widespread declines in pollinator diversity across Europe in a combination of agricultural intensification, habitat degradation, diseases parasites and climate change factors. The need for bees has never been more critical with pollinators responsible for the production of crops producing vegetables, fruits, seeds and nuts for human consumption.

In the absence of accurate and reliable data on the health of bee colonies, beekeepers’ experience and practices. Improving beekeeping technology, early identification of disease, climate control, and monitoring all have been identified as key factors in reliability. The Behome platform, developed by Beewise Technologies LTD, is a modular commercial AI-powered apary composed of hardware and software that automates beekeeping. The solar-powered system can manage up to 40 hives and streamline their operation such as pollination, honey production, and reproduction. The system includes an automated robotic brood box management system, a computer vision-based monitoring system, an automated honey harvest system, and an automated system for pest control, feeding, and thermoregulation. In this short presentation, we shall present the technological achievements and the advantages of the system as well as the challenges and disadvantages we encountered.
This research is conducted within the Horizon 2020 FET project HIVEOPOLIS (Nr.824069 – Futuristic beehives for a smart metropolis). This website includes: the lot number tracker, the beekeeper profile (1 profile photo, 1 floral source photo and 2 videos of his beehives), the exporter and importer details and a dedicated section with the laboratory analysis and product certification (pdfs) time stamped using the decentralized, publicly auditable, Bitcoin blockchain, removing the need for trusted authorities.

The results suggest that digital information is trusted when it is audible instantly. On this basis, to create simpler business processes and reduce misinformation, blockchain should be taken into account when designing traceability networks.

HIVEOPOLIS project – Futuristic Beehives for a smart metropolis

Remote bee colony monitoring can provide useful information for the beekeepers and aid them in their apiary management. The main parameters of the bee colonies are temperature and weight. Such a monitoring system is a practical tool in the visual way. Based on the outcome, beekeepers can plan the optimal location of the apiary and change it in the case of need. The Python language was used for the model development. Model can be extended to use additional factors and values to increase the precision for field resource evaluation. In addition, input from users (farmers, agricultural specialists, etc.) about external factors, that can affect the apiary location can be taken into account. In the future, the model presented in the previous section will be integrated in a more general system.

This research is conducted within the Horizon 2020 FET project HIVEOPOLIS (824069 – Futuristic beehives for a smart metropolis). To find out more visit the project website https://hiveopolis.eu/.

Comparison of architectures for the real-time colony monitoring

Armands Kviesis1, Aleksejs Zacepins1, Jans Jelinskas2
1Latvia University of Life Sciences and Technologies, Faculty of Information Technologies
2INCE Latvia SIA

Remote bee colony monitoring can provide useful information for the beekeepers and aid them in their apiary management. The main parameters of the bee colonies are temperature and weight. Such a monitoring system is a practical tool in the visual way. Based on the outcome, beekeepers can plan the optimal location of the apiary and change it in the case of need. The Python language was used for the model development. Model can be extended to use additional factors and values to increase the precision for field resource evaluation. In addition, input from users (farmers, agricultural specialists, etc.) about external factors, that can affect the apiary location can be taken into account. In the future, the model presented in the previous section will be integrated in a more general system.

This research is conducted within the Horizon 2020 FET project HIVEOPOLIS (824069 – Futuristic beehives for a smart metropolis). To find out more visit the project website https://hiveopolis.eu/.

Comparison of architectures for the real-time colony monitoring

Armands Kviesis1, Aleksejs Zacepins1, Jans Jelinskas2
1Latvia University of Life Sciences and Technologies, Faculty of Information Technologies
2INCE Latvia SIA

Remote bee colony monitoring can provide useful information for the beekeepers and aid them in their apiary management. The main parameters of the bee colonies are temperature and weight. Such a monitoring system is a practical tool in the visual way. Based on the outcome, beekeepers can plan the optimal location of the apiary and change it in the case of need. The Python language was used for the model development. Model can be extended to use additional factors and values to increase the precision for field resource evaluation. In addition, input from users (farmers, agricultural specialists, etc.) about external factors, that can affect the apiary location can be taken into account. In the future, the model presented in the previous section will be integrated in a more general system.

This research is conducted within the Horizon 2020 FET project HIVEOPOLIS (824069 – Futuristic beehives for a smart metropolis). To find out more visit the project website https://hiveopolis.eu/.

Traceability and Provenance Implementation on a decentralized platform for honey international trading

Igoric Tomas Impeiratrice
Founder, Managing Director Huntrro

Consumers want to know exactly what they eat and where it comes from. It is well established that traceability is complex for every party-role: beekeepers, traders and consumers. The history of the product must be built with information that flows over documents created many times and over various systems creating duplicated, lost data and caos of information.

This study aims to determine how to build trust without revealing confidential information. Specifically, we designed and implemented a traceability platform in blockchain technology. Documents are created once only and transferred over an encrypted network that provides data consistency.

To test the benefits of blockchain we tested over an international trade experiment. In a two step solution: a website and a qr code stamped to the drums of the shipment.
Propolis in the grid is 40 mm². This ensures that propolis grids are cleaned at +20-25°C without the need to clean the surface of bees during propolis accumulation in the grids that we have observed. The grid speed is 2.5 m/min. The surface of the upper pair of shafts is bent in a wave-like way, wherein the same section is bent outwards, and when passing through orange and wild blossoms. Honey production was evaluated individually and data from worker bees was collected and DNA extracted. Real-time PCR using Taqman probe was performed for six previous SNP’s selected associated to honey production by using ddRADseq (Double Digested RAD Sequencing) technique and then sequenced by Illumina technology (DNA-Seq). All data were analyzed at Rstudio. SNP’s with MAP(minor Allele Frequency)<0.1 or absent data rate >10% were removed from analysis. The general linear model of the binomial family that presented the best score for AIC (Akaike Information Criterion) was the ln(Prod(1-Prod)) = x1*SNP1 + x2*SNP3 + x3 + e, where Prod is the probability of the occurrence of the high honey production phenotype, is the intercept estimate, SNP1 and SNP3 are the estimates of the regression coefficients for the respective genotypes. x1 and x2 are the genotypes observed for the respective SNPs, given that they are represented by the first or the second allele of the highest frequency allele (0.1 and 2 for homozygous for the highest frequency allele, heterozygote and homozygous for the lowest frequency allele, respectively) and e is the residue. The model presented pvalue=0.56 (X²=3.44415, DF=1) for the Hosmer-Lemeshow test (GOF Test, Goodness of fit). In conclusion, we use two SNP’s to genotype AH colonies that can be used for accelerated honeybees breeding programs. This research project was supported by FAPESP Project Number 2020/09231-9.

New propolis collecting device

Roman Dvykaliuk,1 Leonarda Andechs,2

1Department of Standardization and Certification of Agricultural Products, National University of Life and Environmental Sciences of Ukraine, Kiev, Ukraine
2National University of Life and Environmental Sciences of Kyiv, Kyiv, Ukraine

There is a need to improve existing propolis production technologies, improve sanitary and hygienic conditions of production, increase productivity and economic efficiency, mechanization and automation of the production process. The goal of the work was to develop a new propolis collecting device. The device was carried out as part of the implementation of the dissertation research on the topic «Scientific and technical support of the propolis production process and equipment». The design of the built-up projections of which enter into each other; an electric motor; holes for insertion of grids with propolis; an outlet; an electric power supply cable and a switch; a protective chamber of moving mechanisms; metal frame. The design of the equipment is such that it can be used for accelerating honeybees breeding programs. This research project was supported by FAPESP Project Number 2020/09231-9.

Development of a Multiple Method for Screening of Pesticides in Honey Using Biochip Array Technology

Nuala O’Loan, Jonathan Porter, Peadar O’Donnell, Simon Brockbank, Ivan Mcconnell, Peter Fitzgerald, Hyacinth Charlet, Randox Food Diagnostics, 55 Diamond Road, Crumlin, Co Antrim BT29 4QY, United Kingdom

Introduction

There is growing global demand for the detection of pesticides in food commodities, such as honey. This is due to the widespread use of a broad range of pesticides and because of an increased focus on food safety. The ideal pesticide would destroy its target pest without causing any harm to humans, non-target species, and the environment. However, their use has been shown to have a negative impact on all of these, and in relation to human health there is evidence of a connection to diseases such as several types of cancer, including leukemia and non-Hodgkin’s lymphoma, and various respiratory conditions like asthma.

Of particular interest to those in the honey industry, are the neonicotinoids and varroaecdides. It has been well documented that neonicotinoids are toxic to bees and other pollinators, which has contributed to a decline in the global population of bees and has an adverse effect on the economy and the biodiversity of the area. Varroaecdides are essential for controlling Varroa mite populations to ensure bee colonies are healthy and productive. However, their use inside bee hives can lead to direct contamination of honey and ultimately cause harm to human health.

Methodology

Pesticides Activity (PAH) I: Evidence Investigator™ kit (EV4395) employs simultaneous immunoassays for the multi-analyte determination of pesticides in honey on the semi-automated bench top Evidence Investigator analyser (EV3600).

Results

A single generic sample preparation allows the detection of 14 common pesticides simultaneously, in up to 48 honey samples, in less than 4 hours. Accuracy of the PAH I array has been demonstrated through participation in multiple third-party proficiency testing schemes.

Conclusion

Pesticides Activity (PAH) I: Evidence Investigator™ kit (EV4395) employing Biochip Array Technology (BAT), uses a single generic array of 14 pesticides, allowing the testing of 48 honey samples in under 4 hours. Accuracy of the PAH I array has been proven through participation in multiple third-party proficiency testing schemes. This innovative biochip array will support those in the honey industry in determining potential causes of bee loss and assist with compliance with food safety legislation.

Simultaneous Analysis of Antibiotic Residues in Bee-Pollen by the Novel Cost and Time Effective Multiclass UHPLC-ESI/MS/MS Method

Dilek Uzunöner, Sezer Acar, İsmail Emir Akyıldız, Sinem Raday, Özge Erdem, Evmar Damarlı

Agricultural Research Institute, Botucatu, Brazil. The experiment was conducted at UNESP, São Paulo, Brazil. Two hundred AHB colonies were technically managed for honey production, during eucalyptus, orange and wild blossoms. Honey production was evaluated individually and data from worker bees was collected and DNA extracted. Real-time PCR using Taqman probe was performed for six previous SNP’s selected associated to honey production by using ddRADseq (Double Digested RAD Sequencing) technique and then sequenced by Illumina technology (DNA-Seq). All data were analyzed at Rstudio. SNP’s with MAP(minor Allele Frequency)<0.1 or absent data rate >10% were removed from analysis. The general linear model of the binomial family that presented the best score for AIC (Akaike Information Criterion) was the ln(Prod(1-Prod)) = x1*SNP1 + x2*SNP3 + x3 + e, where Prod is the probability of the occurrence of the high honey production phenotype, is the intercept estimate, SNP1 and SNP3 are the estimates of the regression coefficients for the respective genotypes. x1 and x2 are the genotypes observed for the respective SNPs, given that they are represented by the first or the second allele of the highest frequency allele (0.1 and 2 for homozygous for the highest frequency allele, heterozygote and homozygous for the lowest frequency allele, respectively) and e is the residue. The model presented pvalue=0.56 (X²=3.44415, DF=1) for the Hosmer-Lemeshow test (GOF Test, Goodness of fit). In conclusion, we use two SNP’s to genotype AH colonies that can be used for accelerated honeybees breeding programs. This research project was supported by FAPESP Project Number 2020/09231-9.
Quality aspects of tropical hones from Reunion Island

Amaud Gillis, Jennyfer Young Sang, Marie Astrid Dutoit, Jimmy Chane Ming
Analytical Unit, Cytoclon Reunion Océan Indien (GIP CYROI), Reunion Island, France

Reunion Island is a French overseas territory located in the Indian Ocean. It owns a rich indigenous and endemic biodiversity that grows in tropical weather. While the local beekeeping industry has been flourishing for decades, Reunisen honeys have never been described in the scientific state of the art. For the first time, a European project was launched to check the quality aspects of Reunisen honeys.

The Reunisen beekeeping industry gathered around this project. 70 beekeepers gave 330 samples of monofloral and polyfloral honeys. Among those are exotic plants: Pink pepper (Schinus terebinthifolius), Lychee (Litchi chinensis Sonn.), and endemic plant: Tan Rouge (Weinmannia tinctoria). Their physicochemical parameters (% humidity, free acidity, hydroxymethylfurfural, pH, conductivity...) were measured with official methods and compared to standard criteria specified by The International Honey Commission.

These measurements revealed that more than 80% of our samples meet the quality standard requirements. It proved the serious skills of Reunisen beekeepers, who can produce fine honeys despite the tropical weather and high humidity. Furthermore, our results processed with chemometric techniques demonstrated a clear distinction between hones from several floral sources.

The next step of our project will be to carry on the chemical and biological characterization of the samples. This complete description will highlight the best sources of honeys: the ones that provide the most exceptional biological and ecological properties. It could also promote the Reunisen beekeeping industry and lead to prosperous economic development.

Unraveling the chemical composition, antioxidant, -amylase and -glucosidase inhibition of Moroccan propolis

Badiaa Lyous1, Hassan Laaroussi2, Zlatina Genisheva2, Pedro Ferreira Santos2, Meryem Bakour1, Arnaud Gillis1
1Laboratory SNAMOPEQ, University Sidi Mohamed Ben Abdallah, Fez, Morocco
2Centre of Biological Engineering, University of Minho, Braga, Portugal

In the present study, seven propolis samples collected from different areas of Morocco were evaluated for various potential attributes. Physicochemical parameters (moisture, pH, soluble substance, insoluble substance, ash content, conductivity, organic matter, resin, balsams, total carbohydrates, total proteins and mineral content), structural characterization by FTIR, phenolic and flavonoid composition and some biological activities (antioxidant, -glucosidase and -amylase inhibitory activities) were determined. The analyzed physicochemical parameters showed the following values: moisture (3.3±5.2%), pH (4.1±5.5), soluble substance (66.1-75.4%), insoluble substance (23.8-33.7%), ashes (6.1-23.3%), conductivity (1.5-2.5 mS/cm), organic matter (49.70-89.84%), wax (19.7-51.5%), balsam (15-31%), total carbohydrates (1.5-2.0 mg Gce/g), and total proteins (7.6-12 g/100 g). Calcium, sodium, potassium, and magnesium were the most predominant minerals present in propolis samples. The phytochemical composition indicated the presence of phenolic acids, flavonoids and stilbene compounds described as having a high antioxidant capacity and potential -amylase (IC50 = 195.09-963.79 µg/mL) and -glucosidase (IC50 = 90.99-876.24 µg/mL) inhibitory activities. Moreover, FTIR spectra showed that the samples are structurally different between them, validating the results of the phycochemical analysis. The outcome of this study provides relevant information about Moroccan propolis composition and quality standards.

PP-186 [Beekeeping Technology and Quality]

Proline content of Persian Sidr honey

Mohammad Refahi
Research and Development Unit of Mr. Honey Co.

Sidr Honey, the mono-floral honey which comes from the bees that feed exclusively on the nectar of the wild Sidr tree. In this study, the proline content of a total of 20 samples of Iranian honey was investigated. Proline is the most abundant amino acid in honey and about 50 to 85% of all amino acids originate from nectar, pollen and saliva secretions of bees and is one of the important indicators of quality for distinguishing natural honey from polluted honey. In this study, samples were obtained directly from beekeepers located in the southern regions of Iran and all information about honey samples including harvest location, honey processing time, bee breed and nectar-producing plants of the apiary location were recorded. All samples were examined by sensory evaluation experts in terms of organoleptic indicators by markers method in terms of color, odor, taste, aroma and finally and scored. In this test, only honeys with a score greater than 70 out of 500 points were selected for the proline test. The proline content of all honeys was measured by spectrophotometry High-performance liquid chromatography (HPLC) and finally the proline content of Iranian honey was reported in the range of 388 to 690.5 with an average of 519.5. Based on this study, a positive correlation was observed between sensory evaluation score, quality and amount of honey proline. It is suggested that the total proline content of this study be used as a qualitative indicator to evaluate honey.

Investigation of Physicochemical Properties of Gavan Gaz Honey From the Western part of Iran

Seyed Ruhollah Razavi1, Mohammad Refahi2, Ali Cham1, Marzieh Julaei2
1Research and Development Unit of Shahdadaran najafabad honey Co. Ishfan, Iran
2Research and Development Unit of Mr. Honey Co. Qom, Iran

Astragalus is the most significant and diverse plant species on the Iranian plateau, and according to the latest studies, more than 464 species of Astragalus grow in Iran, of which 620 species are endemic to Iran. Species diversity and high density of astragalus species have led Iranian botanists to call it Astragalus paradise. Astragalus species in Iran is the most important source of nectar for bee colonies in Iran, which occupy about 15 to 17 million hectares of rangelands in Iran. Astragalus species is the most important nectar-producing species of the Zagros vegetation region in Iran, producing one of the most important mountain honey in Iran. Gavan gaz (Astragalus ascendens) honey is one of the most important Monofloral honey in Iran, whose annual production in Iranian apairies is estimated at 1500 to 2000 tons. This study aimed to determine the physicochemical indices of 22 samples of Astragalus ascendens honey produced in 10 different regions in western Iran. Honey samples were evaluated for moisture content, reducing sugars before hydrolysis, reducing sugars after hydrolysis, sucrose, proline and HMF according to the instructions of the Food Codex. In terms of parameters, the studied samples complied with the values defined in the Codex standard and the national standard of Iranian honey. The results showed that the moisture content of honey (17.8-17 and mean 16.2), reducing sugars before hydrolysis (7.28-77.2 and mean 74.8), reducing sugars after hydrolysis (75.8-60.4 and mean 77.8) sucrose (1.3-5.8 and mean 2.8) proline (403-1203 and mean 650) and hydroxymethylfurfural (0-16.92 and mean 1.8). Analysis of the results of this study shows that the physicochemical parameters of Astragalus ascendens honey depend on the location of bee colonies, climatic conditions, and breed and beekeeper management. Determining the value of each of these indicators depends on further studies in the future. This study is the first comprehensive report on the physicochemical indices of “Astragalus ascendens” honey as one of the indices of the Iranian plateau in the Zagros vegetation region.

PP-199 [Beekeeping Technology and Quality]

Native and Endemic Chilean honeys: its biological and sensory properties

Gloria Montenegro, Gabriel Núñez
Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile

Chile is one of the world hotspots that can produced a range of honey diversity. The presence of two great mountain chains along the country, the Andes Mountain and the Coastal Range, generate very diverse geomorphology with different valleys and microclimates, allowing that almost half of the vascular flora is endemic, giving a unique character to the honeys. The production of unifloral honey from endemic species arises in two geographical Chilean regions. The first corresponds to the Central Sclerophyl Matorral, with a semi-arid Mediterranean climate, where the Evergreen Sclerophyl Matorral is the dominant vegetation. Unifloral honeys produced from this plant community are botanically originated from Lituca caesia, Corinotillo (Escarahna pulverulenta), Arányhui (Luma aculeata), Sauce (Salix humboldtiana), Corocó (Azana petiolus), Tevo (Retanilla)
Properties, Production Technology And Efficient Use Of Beeswax Foundation With The Addition Of Propolis (BEE GLUE)

Valeriy Dombrovskyi1, Olga Dombrovskyi1, Ivan Dombrovskyi2

1Kyivoblbdzholoprom, Kibenka, 78Str., Boyarka Town, Ukraine
2Supreme Court of Ukraine, Yermolenko str., Novosilsky, Kyiv-Sviatoshinsky District, Kiev Region, Ukraine

Vital functions of honeybees depend on many internal and external factors, including the state of the brood nests. The quality of raw beeswax for producing foundation and the honeycombs rebuilt on it has a subsequent effect on the processes associated with the development, productivity and spreading of diseases in the brood nests. We have set the goal to ground theoretically and experimentally the efficiency of applying the additives of bee glue fractions in producing the wax foundations, as well as to improve the equipment and technology of their production and study the efficacy of their application.

At the first stage, by applying conventional techniques, we conducted microbiological, physical, biochemical research of the wax foundation samples produced in experimental way (control group), and the samples obtained from raw beeswax to which we have added various bee glue fractions. At the second stage we made comparative evaluation of beeswax samples directly in bee-colonies using zoo-technical and ethological research methods.

Microbiological studies have shown that the wax foundation with additives of the bee glue fractions inhibits the growth of microorganisms during the first five days, including Ascosphaera apis (by 85-95%) and Aspergillus niger (by 75-90%) and decreases the load of colon and absence of excrement traces in the nest are observed. In cases of expansion of brood nests it has been determined that compared to the control group, the number of bees was in 3.6-5.8 times higher on the experimental beeswax, and bee-families were rebuilding their honeycombs faster and more actively. Through using conventional and experimental wax foundations in the commodity apiaries in different regions of Ukraine the increase of productivity of honeybee-families within the experimental group by 18.2 kg for 5 years, compared to the control group (P <0.01), has been set.

Quality of drone brood from Slovak Apis mellifera carnica bee colonies

Lucianas Račalová1, Peter Patráš2, Jaroslav Gasper1, Mária Polačiková1, Vladimíra Žitňanová1, Štefan Tučka1

1National and Agricultural Food Centre, Research Institute for Animal Production Nitra, Institute of Apiiculture, Liptovský Hádok, Slovakia
2National and Agricultural Food Centre, Research Institute for Animal Production Nitra, Institute of Nutrition, Lužianky, Slovakia

Bees of Apis mellifera carnica have the largest representation in terms of bees kept in Slovakia. This bee subspecies is perfectly adapted to Slovak climatic conditions. Colonies are characterized by gentleness and low defensive behaviour. Moreover, Apis mellifera carnica is preferred for high disease resistance and good production ability. In Europe, drone brood is one of less frequently used products. Although, drone brood can be the source of numerous bioactive compounds. The aim of our studies was to find the content of main nutrients, amino acids, and vitamins in lyophilized drone brood of Slovak Apis mellifera carnica for the purpose of next use in supplementary nutrition for humans or animals. Experiment was performed in four individual apiaries. Drone brood was obtained from drone combs by washing out of larvae at the age of 7±2 days. Obtained drone brood was subsequently frozen, lyophilized, homogenized, and analysed. In the samples, protein content was detected from 35.6% to 46.3% of dry matter. Content of crude fibre was very low, but fat content was quite high (20.5-22.5% of dry matter) as well as total sulfur content (15.3-18.3% of dry matter). Total content of amino acids ranged from 34.1 to 42.0% of dry matter. The highest content was found for glutamic acid, aspartic acid, leucine, proline, and lysine. The lowest concentration was determined for cystine. From the vitamins, drone brood is valued mainly for high content of B vitamins. From them, the highest content was found for niacin (16.3 mg/100g) and pantothentic acid (4.8 mg/100g). Instead of B vitamins, we found high content of vitamin C (21.7-30.8 mg/100g) in drone brood. Content of evaluated compounds showed relatively high variability in term of different apiaries. Nutrients in drone bee can be determined by age balance of obtained larvae as well as influence of environment. Based on this study and various others, drone brood seems to be the perspective nutritional product with a high potential for human and animal health.

Some product of Apis mellifera carnica is sometimes even undefined composition, claiming a set of actions at the level of brood stimulation, energy supplementation, queen rearing support, reduction of varroa reproduction levels, improvement of the intestinal microflora of bees, nosera prevention, improvement of the health of hive-infested by American foulbrood, among others. To address this issue, the members of COLOSS (Honey Bee Research Association), NUTRITION Task Force, for the first time propose an action on honey bee feed control and monitoring, setting the four main OBJECTIVES:

1) Elaborate methodologies to study bee aliments (protocols, good laboratory practices), and to identify different stakeholders to clarify the type of analyses depending on their needs (e.g. organic or legal framework);
2) Create and coordinate a network of laboratories able to use the proposed methodologies (ing tests, evolution of the methods with time and development);
3) Apply the methodologies to a large set of bee aliments at a worldwide scale; and
4) Elaborate guidelines to support and assist food companies and regulators to proceed the effective control of the quality and safety of supplements and substitutes for honey bees.

This action will allow more information to the stakeholders via monitoring and set the basis for regulation of products to reach the minimum standards for quality, effectiveness, and economy of honey bee feed, and finally guaranteeing the quality of the bee products.

How IOT tech could help to keep honey bees as a hobby

Mikek Shafieyee1, Elham Sadat Mahmoudi2, Ardashir Baran2

1Urmia University, Urmia, Iran; Verna Sanat Co.
2Verna Sanat Co.

Urban Beekeeping as a new hobby is becoming widespread globally, which benefits everyone. Keeping honey bees is a challenge that needs knowledge. The main part of beekeeping is inspecting the hive, which can be facilitated by IoT technology, so ordinary people are also encouraged to keep honey bees in their environment as a hobby. The IoT technology use sensors like temperature, humidity, sound frequency, and weight for this aim. Data are managed by an IoT board (named Kandooplus) that transmits them to the mobile application wirelessly. The collected data are sent to the server and scrutinized by experts. Then, the results are replied to the mobile application, and the proper action is suggested to the beekeeper. In other words, the kandooplus is a professional remote assistant that takes care of honey bees. It is also possible to have an early warning for the main challenges of beekeeping, such as swarming, which is critical for urban beekeepers, by adding artificial intelligence.
Impact of sorghum honeydew on the authenticity of Argentine honeys

Marisa Amadei Enghelbmayr1, Valeria Soledad Rosso1, Mariela Rita Scorches1, Adriana Salass1, Macarena Violeta Casuso1, Graciela Adriana Rodríguez2, María Alejandra Palacios5, Eduardo Victor Trumper6, Luis María Maldonado7, Hernán Pietronave8, Mónica Gaggiotti9, Correa Benítez4, Aurora Xolalpa Aroche5

At the beginning of 2021, the finding of a large number of positive LC-IRMS tests on Northeast Argentine honeys resulted in many commercial conflicts regarding honeys authenticity. Public entomological reports indicated the presence of the yellow sugarcane aphid, *Aphis gossypii*, in the north of the country and expanding towards the south. Aphis feeding on the sorghum (*C4* plant) leaves produces honeydew that attracts several species of insects, including bees. More than 100 honeydew simples of 2021 crop from different northeastern provinces were tested by EA-IRMS, LC-IRMS, NMR, pollen analysis and other characterization tests such as color, moisture, HMF, FG, sucrose and conductivity. Collaborative trials were carried out with two external laboratories with addition of LC-IRMS test. In January 2022, honeydew samples were collected in Chaco and Entre Ríos provinces. The pure honeydews were as well as Entre Ríos honeys spiked with 1, 5, 10 and 50% of honeydew were studied by LC-IRMS and NMR. Honeydew of 2021 crop showed variable deviations for LC-IRMS while negatives for EA-IRMS, NMR, and HRRS. The characterization of honeys showed that higher LC-IRMS deviations (Oxymeth and presence of oligosaccharides) were correlated with higher colors, conductivities and F/G rates quantifications. The LC-IRMS results for pure honeys and spiked honeys reproduced the deviation of the assay. Pure honeys showed the nature of C4 sugars and a large amount of trisaccharides and oligosaccharides, which could explain the deviation of the test with very small amounts of honeydew. Different compositions between the Entre Ríos and Chaco honeydews were found. The study of the pure honeydews suggests the link between the presence of this new sorghum pest from northeastern Argentina and the positive LC-IRMS findings in honey. Analytical capacity together with field work made it possible to quickly detect this new honeydew, hence avoiding big economic losses due to a failure in the authenticity testing.

Phytochemical Constituents, Antioxidant and Antimicrobial Activities of the Ethanolic Extract of Brown Propolis collected in Zacatecas, Mexico

Jose Fausto Rivero1, Blanca Estela Rivero Cruz2, Karen Tatiana Hernández Osorio2, Gloria Díaz Ruíz2, Adriana Correa Benitez2, José Sotero Delgado Dominguez2, Ingeborg Becker4, Emil Neme Martinez1, Aurora Xolalpa Aroche5

Propolis is a complex mixture of natural sticky and resins components produced by honeybees from living plant exudates. Globally, research has been dedicated to studying the biological properties and chemical composition of propolis from various geographical and climatic regions. However, the chemical data and biological properties of brown propolis produced in the North of Mexico are scant. The antioxidant activity of the ethanolic extract of propolis (EEP) sample collected in Zacatecas, Mexico and the isolation of the main components is described. The antibacterial activity was tested using the minimum inhibitory concentration (MIC) assay. Two major known flavonoids (pinocembrin and chrysin) were isolated and identified by nuclear magnetic resonance spectroscopy (NMR). Additionally, the volatile compounds were identified by means of headspace-solid phase microextraction with gas chromatography and mass spectrometry time of flight analysis (HS-SPME/GC-MS-TOF). The main volatile compounds detected include nonanol (10.82%), pinene (7.74 %), thymol (4.29 %), and -terpineol (4.39 %).

Botanical origin and total phenols in corbiculae bee pollens from different regions of Chile

Karen Yahe1, Juan González1, Enrique Rojas1, Daniel Ramírez2, Jean Pierre Francois3, Anel Muñoz4

Corbiculae pollen is a mixture of collected pollen and salivary secretions that the bee kneads into small balls and transports on the third pair of hind legs to the hive, where it is collected by beekeepers with pollen traps before the bees enter through the entrance. It is well known that bee pollen has a high nutritional value, since it contains proteins, carbohydrates, essential amino acids, vitamins and minerals, nutrients used not only by the hive, but also by man, who increasingly consumes this product as a food supplement, which is also a potent antioxidant, whose high content of polyphenols and flavonoids, gives it antibacterial and antifungal properties. This study presents the palynological analysis to determine the botanical origin of fourteen samples of fresh frozen pollen applying the Chilean Norm (NCh 3255, 2011). Additionally, some physical and chemical properties were determined to differentiate and valorize the fresh pollens from different geographical areas of Chile.
Physicochemical and Antioxidant Properties of Stingless bee Scaptotrigona mexicana Honey from Totonacapan Region of Mexico

Jose Facundo Rivero Cruz1, Blanca Estela Rivero Cruz2, Emili Neme Martinez2, Adriana Correa Benitez2, Aurora Xolapch Aroche4

1Inca la Isla SPR de RL, Papantla 93538, Veracruz, Mexico
2Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, México
3Facultad de Medicina Veterinaria y Zootecnia, Ciudad Universitaria, Ciudad de México 04510, Mexico
4Ingeniería en Sistemas de Producción Agroecológicos. Universidad Intercontinental Maya de Quintana Roo (UIMQROO). Carreira Muna - Felipe Carrillo Puerto Km 137, S/N 77870, La Presumida, José María Morelos, Quintana Roo, Mexico.

The physico-chemical properties of stingless bee honey are diverse according to origin of geographical or botanical and fruit or flower season. These factors result in production of honey with different color, chemical components and water content, although the bee species is similar. To date, the physicochemical properties of honey from Mexican Scaptotrigona species are poorly studied. Therefore, determination of physicochemical properties of honey from stingless bee is crucial for Mexican researchers in order to analyze the purity of the honey. 54 honey samples were used for the current study. The physico-chemical parameters were evaluated for the moisture content (A), total acidity (B), reducing sugar (C) and hydroxymethylfurfural (D). The study results showed that the mean values of parameters for honey samples were: A (26.0% ± 1.6), B (95.2 mEq/Kg ± 33.8), C (67.9% ± 3.8) and D (18.6 ± 9.2 μg/g). The values were compared against the standard physicochemical parameters of Apis mellifera and these values significantly varied for moisture content and total acidity. The color of stingless bee honey varies based on observation or absorbance assay.

The presence of feral honeybee colonies in putative mating sites detected during BeeConSel project

Anja Molzik1, Andreja Opina1, Jernej Iblinčič2, Anja Pavlin2, Andraz Marinić2, Katarina Mole1, Manca Kojek1, Brane Kozinc3, Marin Kovačić3, Zlatko Pulskadja4, Karolina Tučak1, Filip Jaman1,11, Adriana Correa Benitez2, Borce Pavlin1, Goran Aleksandrov1,4, Magdalena Jovanovska1,5, Sreten Andonov1,6, Bjorn Dahle7,8, Ianiz Prellm9

1Agricultural Institute of Slovenia, Ljubljana, Slovenia
2Biotechnical faculty, University of Ljubljana, Slovenia
3Cebelarstvo Kozinc, Slovenia
4Faculty of Agrobiotechnical Sciences Osijek, Croatia, Centre for applied life sciences Healthy Food chain Ltd, Osijek, Croatia
5Faculty of Agricultural Sciences and Food, Ss. Cyril and Methodius University in Skopje, Macedonia
6Faculty of Agricultural Sciences and Food, Ss. Cyril and Methodius University in Skopje, Macedonia, Company for Applied Research and Permanent Education in Agriculture, Skopje, North Macedonia
7Company for Applied Research and Permanent Education in Agriculture, Skopje, North Macedonia, Eko Pčela, Skopje, North Macedonia
8Company for Applied Research and Permanent Education in Agriculture, Skopje, North Macedonia
9Swedish University of Agricultural Sciences, Uppsala, Sweden
10Norwegian Beekeepers Association, Kåfjord, Norway
11Faculty of Agrobiotechnical Sciences Osijek, Croatia

Many European countries have established their own honeybee breeding programs. However, one crucial element - mating control - is often missing. Consequently, the genetic gain is not as desired, prompting beekeepers to consider purchasing queens from commercial sources. These are even commercial hybrids which are less suitable for local conditions. EEA and Norway Grants Fund for regional cooperation project Joint Effort For Honey Bee Conservation and Selection – BeeConSel - aims to establish tailor-made effective mating control in beneficiary countries (Croatia, N Macedonia, Slovenia). The most common approach is an isolated mating station, but the inability of sufficient isolation of the station itself is also the most common weakness.

Several putative mating station locations were proposed in beneficiary countries in geographically different situations. These locations were supposed to be free of any other managed honeybee colonies as well as any feral honeybee colonies. Additionally, at one location the set-up also included Joe Horner method in which the time of the nuptial flight of the queen is delayed enabling control over mating. Our goal was to determine whether the proposed area is semi- or completely isolated that is clean from interference from other colonies to provide successful controlled breeding.

During season 2021 these locations and approaches were tested in the absence of their own drone producing colonies installing only virgin queens in mating nucs at each location. Successfully mated queens and their brood were sampled for genetic analyses. The number of patrilines present in mated queens at each location was estimated using microsatellites.
In recent years in Italy there has been a spread of the cultivation of some varieties of hemp known under the name of "Cannabis light", due to the multiplicity of uses that can be made of it. "Cannabis light" is the generic name that refers to Cannabis varieties in which the quantity of the active ingredient delta-9-tetrahydrocannabinol (THC) is low while the content of its metabolite, cannabidiol (CBD) is high, which has various positive effects on human health. The hemp plant is an invaluable source of bioactive compounds with important pharmacological and nutraceutical properties: an oily resin is secreted and accumulated within the glandular trichomes of female inflorescences, consisting of cannabinoids and terpenes. Interest in the therapeutic use of Cannabis and its derivatives is on the rise, since the scientific literature, which has become increasingly extensive in recent years, supports its effectiveness. The propolis collected on the resin of Cannabis light by the bees could provide a very interesting product.

To evaluate the presence of THC and CBD on propolis collected from bees, a preliminary study was conducted by bringing some hives to a Cannabis light cultivation and preparing them for the propolis harvest.

The analyzes conducted on the collected propolis indicated that THC in this propolis was below the limits established by Italian law while CBD was present. These results indicate that propolis produced near Cannabis light crops can be a very interesting product from a therapeutic point of view. Further investigations are needed to confirm the collected data.

Sugar Profiles of Stingless Bee Honey sampled from North East Peninsular of Malaysia: Trehalulose as Potential Marker for authenticity

Honey is a natural food that is mainly composed of sugars such as glucose, fructose, sucrose and maltose. Other constituents include minerals, organic acids, amino acids, polyphenol compounds, vitamins, essential oils, and other active substances. Sugar properties of honey are responsible for such as energy value, viscosity, hygroscopicity, and granulation important factors related to honey quality, low insulinemic index, low glycemic index and highly active antioxidant. Recent study has identified a unique trehalulose sugar in stingless bee honey (SBH). The finding sparks a new interest in honey, particularly in Malaysia which is produced nearly 150 metric tons of SBH yearly. The objective of the study was to determine major sugar composition of SBH from North East Peninsular Malaysia especially trehalulose. Further, Hydroxy-methyl-furfuraldehyde (HMF) level was also determined to ascertain the freshness of honey samples. A total of 50 samples were collected from 50 farms and tested for fructose, glucose, sucrose, trehalulose and HMF using ultra-high-performance liquid chromatography (UPLC) techniques. The various sugars in the 50 honey samples were found in SBH starting with fructose range (37 to 48 g/g100 g) and glucose (37 to 43 g/100 g). The UPLC analysis also revealed the presence of trehalulose ranging between 15 to 25 g/100 g. Furthermore, Fructose + Glucose (F+G) (37 to 84 g/100 g), Fructose/Glucose (F/G) (0.8 to 1.3), HMF-values range from 3 mg/kg to 13 mg/kg. Results showed that sugar and HMF values meet the Malaysian Standard for SBH MS2683:2017 Specification. The chromatographic results showed the presence of the trehalulose in all stingless bee honey samples.
Introduction of controlled bee pollination of Actinidia in Ukraine

Leonora Aldamychuk1, Roman Dykyaluk2, Yuri Bakun2
1National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine; National Science Center PI Prokopovich Institute of Beekeeping, Kyiv, Ukraine; Public Organization «Foundation of Women Beekeepers», Kyiv, Ukraine
2Department of Standardization and Certification of Agricultural Products, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
3USAID’s Agriculture Growing Rural Opportunities Activity (AGRO), Chemonics International Inc.

Actinidia arguta is a dioecious plant in Ukraine. For the production of Actinidia fruits in industrial-scale production, it is grown in the south of Ukraine. Actinidia is a dioecious liana for which cross-pollination is very important. To produce fruit, 10-15 female lianas need a male one and effective controlled pollination. The goal of the research was to introduce for the first time controlled bee pollination of a Actinidia in Ukraine. The research was carried out during May-June 2021 in the conditions of CHORNOMORSKIY ALLIANCE LLC (Odesa Oblast, Ukraine) within the project «Development of the market controlled pollination in Ukraine», supported by USAID’s Agriculture Growing Rural Opportunities Activity (AGRO). Actinidia was grown on 23 hectares under a protective net against severe weather conditions. 80 bee colonies were used in the study. The results were as follows: a contract for the provision of controlled bee pollination services between the beekeeper and the farmer (taking into account climatic and economic needs) has been developed, which meets the current legislation of Ukraine; the selection of technology for the use of bees in the application of protective nets has been carried out with the creation of bees’ flight routes along the rows of Actinidia; a scheme for housing bee colonies for efficient pollination has been developed; a cyclogram for feeding use and bee training to stimulate bee flight activity has been developed; support for the provision of controlled bee pollination services has been provided; actinidia yields due to the use of controlled bee pollination has been recorded; the commercial quality of the berries has been improved as a result of the use of controlled bee pollination.

Quality of Actinidia berries after controlled bee pollination

Leonora Aldamychuk1, Roman Dykyaluk2, Yuri Bakun2
1National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine; National Science Center PI Prokopovich Institute of Beekeeping, Kyiv, Ukraine; Public Organization «Foundation of Women Beekeepers», Kyiv, Ukraine
2Department of Standardization and Certification of Agricultural Products, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
3USAID’s Agriculture Growing Rural Opportunities Activity (AGRO), Chemonics International Inc.

Actinidia arguta is a dioecious liana that is grown in Ukraine to produce berries for the food industry. Actinidia controlled bee pollination was first introduced in Ukraine in 2021 within the project «Development of the market controlled bee pollination in Ukraine», supported by USAID’s Agriculture Growing Rural Opportunities Activity (AGRO). The goal of the research was to determine the influence of controlled bee pollination on the quality of Actinidia berries. The harvest took place in September-October in the conditions of CHORNOMORSKIY ALLIANCE LLC (Odesa Oblast, Ukraine). The Faculty of Food Technology and Quality Control of Agricultural Products conducted quality research. The yield of Actinidia due to the use of controlled bee pollination was about 8 t/ha of total fruit mass or 184 t of total area. During the harvesting, the difference between the quality of the berries in places close to the hives (area 1) and remote areas from the bees (area 2) was observed. To assess the quality of the berries, comparisons were made for a number of indicators, namely, quality defects, mass, size, ripeness and organoleptic indicators. The average sample was 268 fruits per area. It has been established that controlled bee pollination has an overall positive effect on increasing Actinidia yields and improving berry quality. Namely, this included technical suitability (quality) of fruit by 13% and reduces the number of berries of technical crop by 7%, which allows to increase profit by 24.22 thousand UAH with each ton of yield; this reduces external defects of berries by 16% for extra quality and 34% for first quality; this reduces the number of internal defects of the berries by 100% for extra quality and 20% for first quality; this improves the organoleptic properties of the berries by 33% in extra quality and 13% in first quality; this increases the weight of conditioned berries of the extra quality by 23.39%; this increases the size and roundness of the berries, the average transverse dimension of the fruit increases by 0.24 mm, and longitudinal by 0.53 mm.

Pollinator Diversity in Litchi Orchard and Effect of Pollinators on Litchi Yield

Mohammed Sakhawat Hossain1, Ruida Armin1, Md Mizanur Rahman1, Sharhina Akhtar2, Jiban Krishna Biswas2
1Department of Entomology, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, Bangladesh
2Department of Neurosciences, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
3USAID’s Agriculture Growing Rural Opportunities Activity (AGRO), Chemonics International Inc.

The study was conducted in a litchi orchard at Istawar of Pabna district to keep a record of the diversity and relative abundance of litchi flower-visiting insects and to see the yield of litchi with and without pollinators in the year 2021. Without netting condition the maximum number of influences per branch was 8.01 where as the number of influences per branch was 8.03 at netting condition. The percentage of male, female, and hermaphrodite flowers was respectively 28%, 40%, 32%. It was observed that different kinds of insect species visit the litchi flower i.e. honeybees, ants, different flies, and other insects. The most visited pollinator was Honeybee (49.72%). The foraging time of the honeybees was the highest at 6.00am to 8.00am and 4.00 pm to 6.00 pm. The butterflies were found from 10.00 pm to 2.00 pm. However, the ants and the flies were noticed almost throughout the day. In the netting condition, the flies, honeybees, butterflies, beetles and other foraging insects were not able to enter through the net but ants were seen inside the net. The yield difference between the netting area and without netting conditions was significant. In the netting condition, the yield was 8% (0.11kg/branch) whereas without the netting condition it was 92% (1.28kg/branch). Pollinators are a crucial factor in our environment. From this experiment, it was revealed that the importance of pollinators and their role in Litchi yield.

Trehalulose detection of stingless bee honey via in silico bio-computational analyses using DNA-Aptamer as a novel synthetic affinity bioreceptor

Shazana Hilda Shamsuddin1, Mohd Zukkiif Mustafa2, Rishruben Sivabalan3, Koc Mun Tung3, Nurin Izany Ramlee4
1Department of Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
2Department of Neurosciences, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
3Biogenes Technologies Sdn Bhd, Technology Incubation Centre, Block 2, Infrastructure University Kuala Lumpur, Unipark Sura, Jalan Ikrarn-UNITEN, 43000 Kajang, Selangor, Malaysia
4Brainey Sdn Bhd, No. 17, Jalan PPN/14, Alam Perdana Industrial Park, Taman Putra Perdana, 47300 Puchong, Selangor, Malaysia

Adulterated honey in market has been the biggest hindrance in the utilization of honey as medicinal therapeutic in hospital setting as well as natural supplement. Evaluation of honey quality and authenticity at present are rely on the laboratory-based detection such as chromatographic analysis which commonly expensive, laborious and not widely available. Hence, a more economic and user-friendly alternative detection tool of adulterated honey is imperative. Aptamer, a synthetic DNA-based bioreceptor that can be designed by bio-computational approach, has the potential to be used as a detection probe of trehalulose in developing biosensor for honey quality and authenticity detection. Trehalulose, is a unique sugar found in stingless bee honey and potentially use as a biomarker to detect the adulterated honey. The present study focused on evaluating the potential of DNA-Aptamer as a novel affinity bioreceptor in detecting trehalulose and other sugars in honey. The specificity binding of DNA-Aptamer in distinguishing trehalulose compared to other sugars was investigated using in-silico bio-computational modelling. The specificity binding of DNA-Aptamer in distinguishing trehalulose compared to other sugars was investigated using in-silico bio-computational modelling. The specificity binding of DNA-Aptamer in distinguishing trehalulose compared to other sugars was investigated using in-silico bio-computational modelling. The specificity binding of DNA-Aptamer in distinguishing trehalulose compared to other sugars was investigated using in-silico bio-computational modelling.
Comparison of controlled pollination efficiency by bumblebees and honeybees of commercial varieties of high blueberry

Leonnor Adamchuk1, Roman Dvykul2, Yuriy Bakun3, Yuriy Belavod4
1National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine; National Science Center PI Prokopych Institute of Beekeeping, Kyiv, Ukraine; Public Organization Foundation of Women Beekeepers, Kyiv, Ukraine
2Department of Standardization and Certification of Agricultural Products, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
3USAD’s Agriculture Growing Rural Opportunities Activity (AGRO), Chemonics International Inc.
4LLC NIKDIARA, Zhytomyr, Ukraine

The research was carried out in the Ijoukak region which is a rural commune in Al Haouz Province of the Marrakech-Tensift-El Haouzz region of Morocco. Thyme honey samples collected during three consecutive years (2016, 2017 and 2018), provided by beekeepers from the area, were analyzed. The quantitative analysis showed that Moroccan thyme honeys of the studied area are characterized by their high thermal stability, high level of reducing sugars and low moisture content. The qualitative analysis revealed that Moroccan thyme honeys of the studied area are characterized by their high level of reducing sugars and low moisture content. The quantitative analysis showed that Moroccan thyme honeys of the studied area are characterized by their high thermal stability, high level of reducing sugars and low moisture content. The qualitative analysis revealed that Moroccan thyme honeys of the studied area are characterized by their high level of reducing sugars and low moisture content. The quantitative analysis showed that Moroccan thyme honeys of the studied area are characterized by their high thermal stability, high level of reducing sugars and low moisture content. The qualitative analysis revealed that Moroccan thyme honeys of the studied area are characterized by their high level of reducing sugars and low moisture content. The quantitative analysis showed that Moroccan thyme honeys of the studied area are characterized by their high thermal stability, high level of reducing sugars and low moisture content. The qualitative analysis revealed that Moroccan thyme honeys of the studied area are characterized by their high level of reducing sugars and low moisture content. The quantitative analysis showed that Moroccan thyme honeys of the studied area are characterized by their high thermal stability, high level of reducing sugars and low moisture content. The qualitative analysis revealed that Morocco

PP-249 [Pollination and Bee Flora]

Hiveopolis - Enhancing migratory beekeeping practice using the digital flowering calendar

Daniels Kotovs, Aleksis Zarepins, Olvija Komaslava
Latvia University of Life Sciences and Technologies, Faculty of Information Technologies

Beekeeping is an important agricultural activity globally that contributes to sustainable rural area development in two main ways—economic (income) support and ecological support from honey bees activities. Apiculture has gained worldwide interest because of its contribution to economic incomes, sustainable environmental conservation and, in the view of this, migratory beekeeping, as a high-yielding technique, is extensively adopted. One of the most important tasks for beekeepers is selection of a good foraging location for bee colonies, especially for migratory or traveling beekeepers. Optimal location will allow bee colonies to forage higher amounts of resources with minimal effort from bees. The lack of pollinated plants, as well as their non-optimal distribution between colonies, can lead not only to a decrease in the productivity of bees, but also to starvation and even death. To make the apiary location planning more predictive and efficient, information about the crop and plant flowering can be used. One of the usable solutions would be to create and visualize a flowering calendar. To make the flowering calendar more user friendly and simplify the application of this tool, it can be combined with spatial information and GIS data. To complete this task, several steps should be taken, starting from the preparation of the flowering data then selecting the area of interest and converting this area into polygons, which correspond to plant fields and, finally, assigning the plants to target fields.

The proposed solution provides flowering simulation, when the fields are encoded by color, based on flowering information throughout the weeks of a year. Having information about the potential amount of foraging resources in specific locations, beekeepers can select and plan foraging places. This work was supported by the project HIVEPOLIS which has received funding from the European Union’s Horizon 2020 research and innovation programs under grant agreement No. 824069.

Impact of climate and land management in Ukraine on the feed resources of honey bees

Dina Lisohurska1, Leonora Adamchuk2, Olha Lisohurska1, Svitlana Furman1
1Polissia National University, Public Organization Foundation of Women Beekeepers, Zhytomyr, Ukraine
2National University of Life and Environmental Sciences of Ukraine; National Science Center PI Prokopych Institute of Beekeeping; Public Organization Foundation of Women Beekeepers, Kyiv, Ukraine

Beekeeping is an important agricultural activity globally that contributes to sustainable rural area development in two main ways—economic (income) support and ecological support from honey bees activities. Apiculture has gained worldwide interest because of its contribution to economic incomes, sustainable environmental conservation and, in the view of this, migratory beekeeping, as a high-yielding technique, is extensively adopted. One of the most important tasks for beekeepers is selection of a good foraging location for bee colonies, especially for migratory or traveling beekeepers. Optimal location will allow bee colonies to forage higher amounts of resources with minimal effort from bees. The lack of pollinated plants, as well as their non-optimal distribution between colonies, can lead not only to a decrease in the productivity of bees, but also to starvation and even death. To make the apiary location planning more predictive and efficient, information about the crop and plant flowering can be used. One of the usable solutions would be to create and visualize a flowering calendar. To make the flowering calendar more user friendly and simplify the application of this tool, it can be combined with spatial information and GIS data. To complete this task, several steps should be taken, starting from the preparation of the flowering data then selecting the area of interest and converting this area into polygons, which correspond to plant fields and, finally, assigning the plants to target fields.

The proposed solution provides flowering simulation, when the fields are encoded by color, based on flowering information throughout the weeks of a year. Having information about the potential amount of foraging resources in specific locations, beekeepers can select and plan foraging places. This work was supported by the project HIVEPOLIS which has received funding from the European Union’s Horizon 2020 research and innovation programs under grant agreement No. 824069.

In Ukraine over the past twenty-five years, the number of bee colonies has decreased by a quarter. This is caused by two factors. It is the climate crisis and human economic activity. As a result of the conducted studies, it was found that the effects of the climate crisis and management in Ukraine on bee feed resources are:

- a decrease in the diversity of honey plants, high plowing, destruction of forests and steppes; reduction of diversity and areas of cultivated honey plants because of the decline of animal husbandry and the spread of monoculture; reduction and change of terms of the growing and flowering of natural honey plants because of the climatic crisis, and cultural due to the use of precocious varieties; reduction of nectar production and quality of nectar of cultural honey plants due to the development of self-pollinating, precocious and drought-resistant varieties. Therefore, for the local solution of the problems of the honey reserve, beekeepers need to: protect and improve honey plant resources; to use bee colony transportation and develop pollination; to breed local ecotypes of bees; to engage in self-education and to be socially active in stimulating the state to solve the problems of feed resources. However, in order this problem globally, a number of actions need at the state level, such as: reducing carbon emissions; rational use of land and reduce its plowing; developing animal husbandry; to introduce scientifically based crop rotation and reduce the share of monoculture; to improve the legislation on the use of bee feed resources; to conduct selection work in beekeeping breeding. Monitoring and adaptation to changing climatic conditions; to carry out scientific research on the preservation and improvement of honey plant resources in the climate crisis; to develop and implement state programs of preservation and improvement of honey plant resources; to conduct educational work on the problems of feed resources of bees and ways to solve it.

In order to maintain the health of bees and the pollination of forests, it is crucial to elucidate which plants the bees visit for the production of honey. Thus, pollen analysis of honey (melissopalynology) was carried out. Twenty unpasteurized honey samples collected during three consecutive years (2016, 2017 and 2018), provided by beekeepers from the Ijoukak region which is a rural commune in Al Haouz Province of the Marrakech-Tensift-El Haouzz region of Morocco were analyzed. The quantitative analysis showed that Moroccan thyme honeys of the studied area are characterized by their low number of grains of pollen (NPG) ranging from 10100 to 17750 in 10g of honey. The qualitative analysis revealed that the bee pollen of Moroccan thyme honeys contained Apiaceae, Fabaceae, Ranunculaceae, Rosaceae and Rutaceae, while the most frequent families found are: Fabaceae, Apiaceae, Lamiaceae, Fagaceae, Myrtaceae, Oleaceae, Amaranthaceae, Cistaceae, Papaveraceae, Poaceae, Brassicaceae, Boraginaceae, Rhamnaceae, Rosaceae, Plantaginaceae, Euphorbiaceae and Lythraceae. Using melissopalynology, authentication of honey according to plants visited by bees was facilitated, a fact that could lead to honeys of higher commercial value, which is prized by consumers.

PP-250 [Pollination and Bee Flora]

Contribution to melissopalynological characterization of Moroccan thyme honey

Khviosa Bendibba1, Lemiae Zaazaa2, Abdelmajid Soulajmari, Abderrazak Khdhamou3
1Laboratory of Biology and Health, University Ibn Tofail, Faculty of Sciences, Kénitra, Morocco
2Laboratory of Plant and Animal Production, Agro-industrie, University Ibn Tofail, Faculty of Sciences, Kénitra, Morocco

In order to maintain the health of bees and the pollination of forests, it is crucial to elucidate which plants the bees visit for the production of honey. Thus, pollen analysis of honey (melissopalynology) was carried out. Twenty unpasteurized honey samples collected during three consecutive years (2016, 2017 and 2018), provided by beekeepers from the Ijoukak region which is a rural commune in Al Haouz Province of the Marrakech-Tensift-El Haouzz region of Morocco were analyzed. The quantitative analysis showed that Moroccan thyme honeys of the studied area are characterized by their low number of grains of pollen (NPG) ranging from 10100 to 17750 in 10g of honey. The qualitative analysis revealed that the bee pollen of Moroccan thyme honeys contained Apiaceae, Fabaceae, Ranunculaceae, Rosaceae and Rutaceae, while the most frequent families found are: Fabaceae, Apiaceae, Lamiaceae, Fagaceae, Myrtaceae, Oleaceae, Amaranthaceae, Cistaceae, Papaveraceae, Poaceae, Brassicaceae, Boraginaceae, Rhamnaceae, Rosaceae, Plantaginaceae, Euphorbiaceae and Lythraceae. Using melissopalynology, authentication of honey according to plants visited by bees was facilitated, a fact that could lead to honeys of higher commercial value, which is prized by consumers.
Role of honeybee in pollination of canola

Naser Tajabadi1, Hossen Pirz, Mehdi Razaq Kazemi, Mohnen Ahanasi, Hamed Rezae, Mohammad Reza Safabakhsh, Seif Allah Nouri1, Ali Solemani1, Ali Imani, Saded Asgar Nemati, Fariba Ardeshi4

1Department of Honey Bee, Animal Science Research Institute of Iran, Agricultural Research Education and Extension Organization, Karaj, Iran
2Agricultural Education and Extension Institute, Agricultural Research Education and Extension Organization, Tehran, Iran
3Mazandaran Agricultural Research and Training Center, Agricultural Research Education and Extension Organization, Sari, Iran
4Temperate Fruits Research Center, Horticultural Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

The economic value of bees for pollination in different countries is estimated between 60 and 141 times the value of its direct production per year. Canola is a self-pollinating crop, but in the presence of pollinating insects, especially bees, its yield increases significantly. Agriculture in Iran is mostly retail owner and feed inmrers do not have enough botanical information about how to fertilize plants, which has led to low production of agricultural products per unit area. On the other hand, not paying attention to the role of bees in increasing agricultural products, including Canola, has caused the presence of bees in many regions to be not welcomed. Therefore, according to the projects, the effect of 20 to 30% of bees on increasing canola production, a promotional research project including treatment isolated by netting with bee pollination (T1) and treatment isolated by netting without pollination by bees (T2) on the yield and yield components of Canola Hayola 50, in the cropping year 2018-2019 at Gavdasht station of Mazandaran Province. The results showed that the controlled use of bees (T1) has a significant role in increasing grain yield. In this regard, the grain yield of the studied cultivar in T1 and T2 treatments was 3770, 2290 kg / ha, respectively. Thus, in the controlled pollination treatment, compared to the isolated control, the grain yield increased by 28%. Estimation of grain yield components also indicates that controlled pollination treatment increased the number of pods per plant along with increasing the weight of 1000 seeds, which ultimately increased grain yield. Due to the fact that the number of seeds per pod is mostly due to genotype and mainly under genetic control, so this trait was not affected by different pollination treatments. In general, the results of this study emphasized that bee pollination has a prominent and significant role on Canola yield.

PP-255 [Pollination and Bee Flora]

Perennial energy crops as “environmental islands” in highly modified agricultural land – bioenergy plantations as a source of benefits for pollinating insects

Natalia Stefania Piotrowska1, Stanisław Zbigniew Czachorowski1, Mariusz Jerzy Stolarski2

1Department of Ecology and Environmental Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Plac Łoźki 3, 10-727 Olsztyn, Poland
2Department of Plant Breeding and Seed Production, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Plac Łoźki 3, 10-724 Olsztyn, Poland

Declines in wild pollinator species in the last decades are well documented. They are driven primarily by habitat loss and a decrease in floral resources resulting from agricultural intensification. Large, monocultural crops, devoid of herbaceous plants do not provide nectar and pollen throughout the all growing season. Negative ecosystem changes have sparked a debate on sustainable agriculture, the main assumption of which is to implement solutions that are beneficial both from an economic and environmental point of view. Landscape mosaic diversity is one of them. It can be achieved by incorporating a variety of plant species to create a mosaic of plant communities within a landscape. Canola is one of the most important energy crops in Central Europe today including honey bee (Apis mellifera) and rusty (Melilotus officinalis) in the crop rotation. Canola is a self-pollinating crop, but in the presence of pollinating insects, especially bees, its yield increases significantly. Agriculture in Iran is mostly retail owner and feed inmrers do not have enough botanical information about how to fertilize plants, which has led to low production of agricultural products per unit area. On the other hand, not paying attention to the role of bees in increasing agricultural products, including Canola, has caused the presence of bees in many regions to be not welcomed. Therefore, according to the projects, the effect of 20 to 30% of bees on increasing canola production, a promotional research project including treatment isolated by netting with bee pollination (T1) and treatment isolated by netting without pollination by bees (T2) on the yield and yield components of Canola Hayola 50, in the cropping year 2018-2019 at Gavdasht station of Mazandaran Province. The results showed that the controlled use of bees (T1) has a significant role in increasing grain yield. In this regard, the grain yield of the studied cultivar in T1 and T2 treatments was 3770, 2290 kg / ha, respectively. Thus, in the controlled pollination treatment, compared to the isolated control, the grain yield increased by 28%. Estimation of grain yield components also indicates that controlled pollination treatment increased the number of pods per plant along with increasing the weight of 1000 seeds, which ultimately increased grain yield. Due to the fact that the number of seeds per pod is mostly due to genotype and mainly under genetic control, so this trait was not affected by different pollination treatments. In general, the results of this study emphasized that bee pollination has a prominent and significant role on Canola yield.

PP-256 [Pollination and Bee Flora]

The controversial importance of Robinia pseudoacacia L. for beekeeping in Northwestern Bulgaria

Nikolay Nikolov

Department of Landscape Ecology and Environmental Protection, Faculty of Geology and Geography, University of Sofia “St. Kliment Ohridski”, Sofia, Bulgaria

Meliferous alien species are an integral part of the modern floral resources of Bulgaria, but their importance is a controversial and ambiguous topic for the beekeeping community. The public focus is mainly on the potential of Robinia pseudoacacia L. to generate high yields of bee products. Outside the immediate public interest, however, remains the important economic question of the long-term effect of the impact of alien species on the structural diversity of natural and cultivated meliferous vegetation in the relevant geographical conditions and the risk of losing species of value to this economic sector. Alien species have been identified as the second cause of species extinction from natural biodiversity (Genovesi & Shine, 2004).

This study presents the results of successive field surveys (2018–2022) on the diversity of meliferous species in the habitat structure of Northwestern Bulgaria (Vratsa region), which confirm this potential danger. In areas of 95 ha occupied by Robinia pseudoacacia L. in the central parts of the municipality of Krivodol (representative for Northwestern Bulgaria), only 11 species of meliferous plants were found, with an area dominance of Robinia pseudoacacia L. of 95%. In habitats unaffected by alien species, the number of meliferous plants found in habitat E1.222 Moesio-Carpathian steppe is 64 species, and in habitat G1.711 Euro-Siberian steppe Quercus woods – 30 species. Within lowland areas (Danube Plain, northern Bulgaria), the process of aggressive self-propagation of alien species leads to periods of the year when pollinators (including honey bees) experience a shortage of nectar and pollen. This causes additional interventions by beekeepers, such as feeding during the active period of colonies and combating swarming (based on the author’s observations and discussions with other beekeepers).

Sustainable beekeeping depends on a steady flow of nectar and pollen from floral resources and a tailored spatial habitat structure to support pollinator movement during the active period. The results presented here aim to provide research data (part of a PhD thesis development) on habitats in Northwestern Bulgaria to contribute to the discussion of long-term perspectives for the beekeeping community in Bulgaria on improving pollinator activity and establishing sustainable beekeeping practices.
Synergy of farmer and beekeeper in organization of sustainable crops pollination in order to maintain health of bees and increase crop yields

Tetyana Vasylkivska¹, Anatoliy Kharkovenko², Kostiantyn Shytiuk³

¹NGO Brotherhood of Ukrainian Beekeepers, Lviv, Ukraine
²Association Professional Pollination of Agricultural Crops, Kyiv, Ukraine
³Kernel, Kyiv, Ukraine

Ukraine is one of the ten largest grain producers in the world.

Ukraine needs at least 5.2 million bee colonies to pollinate major oilseeds. This means that the potential of the beekeeping industry in terms of the number of bee colonies may be significantly increased. As of 2020, 2.6 million bee colonies have been registered in Ukraine.

Twofold increase in a number of bee colonies will have a significant impact on the sustainable development of rural areas and on increasing employment in such areas.

In 2020, we launched a project to conduct field trials to study the impact of additional bee pollination on crop yields of commercial oilseed rape and sunflower.

The peculiarity of the project is that all work is carried out using the most advanced digital systems (precision farming system, smart bee colony monitoring system BeeData) and using large areas of rapeseed (600 ha) and sunflower (1042 ha).

This approach enables us to explore:
- influence of bee pollination on yield, morphological characteristics of the plant and biochemical and technological indicators of seed quality at different distances from hives
- the impact of a change of soil properties (physical and chemical properties of soil) on the land plot on the yield indicators
- methods of preserving bees for the period of treatment of rapeseed and sunflower with insecticides and fungicides
- flight activity of bees during the day and migration of bees between hives
- the effect of the direction of sunflower rows in relation to bee-entrances of the hives on increase in the distance of effective pollination.

According to the results of field tests in 2020, we observed:
- increase in yield of Sherpa rape hybrid at a distance from hives: 200 m - 22.9%, 500 m - 4.3%, 730 m - 6.2%.
- increase in yield of SI Eksperto sunflower hybrid at a distance from hives: 280 m - 27.4%, 720 m - 11.1%, 1220 m - 0.7%.

We have recorded that plants on land plot with better physical and chemical properties and soil respond better to additional pollination by bees.

The project continues, please join.
47th APIMONDIA
International Apicultural Congress
August 24 - 28, 2022
ISTANBUL, TÜRKİYE
www.apimondia2021.com

ORGANIZED BY
www.apimondia.org
apimondiafederation
apimondiabees
apimondia

CONGRESS SECRETARIAT
Conmark Tourism & Event Management Company
Istanbul, Turkey
info@conmark.com.tr
www.conmark.com.tr
+90 212 241 45 41

CONTACT
secretariat@apimondia2021.com
www.apimondia2021.com
apimondia2022
apimondia2022ist
apimondia